8,058 research outputs found

    Numeric and fluid dynamic representation of tornadic double vortex thunderstorms

    Get PDF
    Current understanding of a double vortex thunderstorm involves a pair of contra-rotating vortices that exists in the dynamic updraft. The pair is believed to be a result of a blocking effect which occurs when a cylindrical thermal updraft of a thunderstorm protrudes into the upper level air and there is a large amount of vertical wind shear between the low level and upper level air layers. A numerical tornado prediction scheme based on the double vortex thunderstorm was developed. The Energy-Shear Index (ESI) is part of the scheme and is calculated from radiosonde measurements. The ESI incorporates parameters representative of thermal instability and blocking effect, and indicates appropriate environments for which the development of double vortex thunderstorms is likely

    Preparation of atomic oxygen resistant polymeric materials

    Get PDF
    Polyphenyl quinoxalines (PPQs) are an important family of high performance polymers that offer good chemical and thermal stability coupled with excellent mechanical properties. These aromatic heterocyclic polymers are potentially useful as films, coatings, adhesives, and composite materials that demand stability in harsh environments. Our approach was to prepare PPQs with pendent siloxane groups using the appropriate chemistry and then evaluate these polymers before and after exposure to simulated atomic oxygen. Either monomer, the bis(o-diamine)s or the bis(alpha-diketone)s can be synthesized with a hydroxy group to which the siloxane chain will be attached. Several novel materials were prepared

    Acetylene terminated aspartimides and resins therefrom

    Get PDF
    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties

    N-(3-ethynylphenyl)maleimide

    Get PDF
    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such as N-(3-ethynylphenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties

    Bevalac calibration of the SOFIE range and hodoscope detectors

    Get PDF
    The scintillating optical fiber isotope experiment (SOFIE) is a Cerenkov-dE/dx-Range experiment which was developed initially for balloon flight to study the isotopic composition of cosmic rays in the iron region. The electronic range and hodoscope detectors use scintillating optical fibers to image the tracks of stopping charged particles and to determine their trajectory. The particle range is determined and used together with a Cerenkov measurement to determine the mass of the stopping particle. Preliminary results of a Bevalac calibration performed in August, 1984 with a prototype of the balloon flight instrument, to study the measurement precision in range and trajectory which could be attained with this detector are described

    Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    Get PDF
    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition

    Laser Surface Preparation and Bonding of Aerospace Structural Composites

    Get PDF
    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing
    corecore