274 research outputs found

    Beam tests of a large-scale TORCH time-of-flight demonstrator

    Full text link
    The TORCH time-of-flight detector is designed to provide particle identification in the momentum range 2-10 GeV/c over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a 10 mm thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of 70 ps, giving a timing precision of 15 ps per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area 53 ×\times 53mm2^2 with a granularity of 8 ×\times 128 pixels equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions 660 ×\times 1250 ×\times 10 mm3^3 and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented.Comment: 12 pages, 7 figures, Paper submitted to Nuclear Instruments & Methods in Physics Research, Section A - Special Issue VCI 201

    Test-beam and laboratory characterisation of the TORCH prototype detector

    Get PDF
    The TORCH time-of-flight (TOF) detector is being developed to provide particle identification up to a momentum of 10 GeV/c over a flight distance of 10 m. It has a DIRC-like construction with View the MathML source10mm thick synthetic amorphous fused-silica plates as a Cherenkov radiator. Photons propagate by total internal reflection to the plate periphery where they are focused onto an array of customised position-sensitive micro-channel plate (MCP) detectors. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple photons. The MCPs have pixels of effective size 0.4 mm×6.6 mm2 in the vertical and horizontal directions, respectively, by incorporating a novel charge-sharing technique to improve the spatial resolution to better than the pitch of the readout anodes. Prototype photon detectors and readout electronics have been tested and calibrated in the laboratory. Preliminary results from testbeam measurements of a prototype TORCH detector are also presented

    Control of oocyte release by progesterone receptor-regulated gene expression

    Get PDF
    The progesterone receptor (PGR) is a nuclear receptor transcription factor that is essential for female fertility, in part due to its control of oocyte release from the ovary, or ovulation. In all mammals studied to date, ovarian expression of PGR is restricted primarily to granulosa cells of follicles destined to ovulate. Granulosa cell expression of PGR is induced by the pituitary Luteinizing Hormone (LH) surge via mechanisms that are not entirely understood, but which involve activation of Protein Kinase A and modification of Sp1/Sp3 transcription factors on the PGR promoter. Null mutations for PGR or treatment with PGR antagonists block ovulation in all species analyzed, including humans. The cellular mechanisms by which PGR regulates ovulation are currently under investigation, with several downstream pathways having been identified as PGR-regulated and potentially involved in follicular rupture. Interestingly, none of these PGR-regulated genes has been demonstrated to be a direct transcriptional target of PGR. Rather, in ovarian granulosa cells, PGR may act as an inducible coregulator for constitutively bound Sp1/Sp3 transcription factors, which are key regulators for a discrete cohort of ovulatory genes

    Beam tests of a large-scale TORCH time-of-flight demonstrator

    Get PDF
    The TORCH time-of-flight detector is designed to provide particle identification in the momentum range over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of , giving a timing precision of per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area with a granularity of equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented

    Status of the TORCH time-of-flight project

    Get PDF
    TORCH is a time-of-flight detector, designed to provide charged π∕K particle identification up to a momentum of 10GeV/c for a 10m flight path. To achieve this level of performance, a time resolution of 15 ps per incident particle is required. TORCH uses a plane of quartz of 1 cm thickness as a source of Cherenkov photons, which are then focussed onto square Micro-Channel Plate Photomultipliers (MCP-PMTs) of active area 53 × 53mm2, segmented into 8 × 128 pixels equivalent. A small-scale TORCH demonstrator with a customised MCP-PMT and associated readout electronics has been successfully operated in a 5GeV/c mixed pion/proton beam at the CERN PS facility. Preliminary results indicate that a single-photon resolution better than 100ps can be achieved. The expected performance of a full-scale TORCH detector for the Upgrade II of the LHCb experiment is also discussed

    Test-beam performance of a TORCH prototype module

    Get PDF
    The TORCH time-of-flight detector is designed to provide a 15 ps timing resolution for charged particles, resulting in K/p (p/K) particle identification up to momentum of about 10 (15) GeV/c over a 10 m flight distance. Cherenkov photons, produced in a quartz plate of 10 mm thickness, are focused onto an array of micro-channel plate photomultipliers (MCP-PMTs) which measure the photon arrival times and spatial positions. A TORCH demonstrator module instrumented with a customised MCP-PMTs has been tested at the CERN PS. The useful implementation for the particle identification in the LHCb experiment requires single-photon time resolution of 70 ps. The timing performance and photon yields have been measured as a function of beam position in the radiator, giving measurements which are approaching the required resolution. A possible TORCH design of the particle identification system in the LHCb experiment has been simulated and its potential for high luminosity running has been evaluated

    The TORCH time-of-flight detector

    Get PDF
    TORCH is a large-area time-of-flight (ToF) detector, proposed for the Upgrade-II of the LHCb experiment. It will provide charged hadron identification over a 2–20 GeV/c momentum range, given a 9.5m flight distance from the LHC interaction point. To achieve this level of performance, a 15ps timing resolution per track is required. A TORCH prototype module having a 1250×660×10mm3 fused-silica radiator plate and equipped with two MCP-PMTs has been tested in a 8GeV/c CERN test-beam. Single-photon time resolutions of between 70–100ps have been achieved, dependent on the beam position in the radiator. The measured photon yields agree with expectations

    A precision time of flight readout system for the TORCH prototype detector

    Get PDF
    The TORCH detector provides low-momentum particle identification, combining Time of Flight (TOF) and Cherenkov techniques to achieve charged particle pi/K/p separation between 2–20 GeV/c over a flight distance of 10 m. The measurement requires a timing resolution of 70 ps for single Cherenkov photons. For precision photon detection, customised Micro-Channel Plate Photomultiplier Tubes (MCP-PMTs) with high precision TOF measurement electronics have been developed. The electronics measures time-over-threshold from the MCP-PMT and features a 10-Gigabit Ethernet readout. This paper reports the design and performance of a 5120-channel system which currently instruments a pair of MCP-PMTs, but has the capacity to read out ten customised MCP-PMT devices in the future

    Performance of a prototype TORCH time-of-flight detector

    Get PDF
    TORCH is a novel time-of-flight detector, designed to provide charged particle identification of pions, kaons and protons in the momentum range 2–20 GeV/c over a 9.5 m flight path. A detector module, comprising a 10 mm thick quartz plate, provides a source of Cherenkov photons which propagate via total internal reflection to one end of the plate. Here, the photons are focused onto an array of custom-designed Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMTs) which measure their positions and arrival times. The target time resolution per photon is 70 ps which, for 30 detected photons per charged particle, results in a 10–15 ps time-of-flight resolution. A 1.25 m length TORCH prototype module employing two MCP-PMTs has been developed, and tested at the CERN PS using a charged hadron beam of 8 GeV/c momentum. The construction of the module, the properties of the MCP-PMTs and the readout electronics are described. Measurements of the collected photon yields and single-photon time resolutions have been performed as a function of particle entry points on the plate and compared to expectations. These studies show that the performance of the TORCH prototype approaches the design goals for the full-scale detector
    • 

    corecore