28 research outputs found

    Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?

    Get PDF
    Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia

    Technical and Comparative Aspects of Brain Glycogen Metabolism.

    Get PDF
    It has been known for over 50 years that brain has significant glycogen stores, but the physiological function of this energy reserve remains uncertain. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism, and may also stem from some conceptual limitations. Factors presenting technical challenges include low glycogen content in brain, non-homogenous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here, we briefly review aspects of glycogen structure and metabolism that bear on these technical challenges, and discuss ways these can be overcome. We also highlight physiological aspects of glycogen metabolism that limit the conditions under which glycogen metabolism can be useful or advantageous over glucose metabolism. Comparisons with glycogen metabolism in skeletal muscle provide an additional perspective on potential functions of glycogen in brain

    Correction: International Society of Sports Nutrition position stand: Nutrient timing

    Get PDF
    Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake

    What's Brewing With Caffeine?

    No full text
    corecore