17 research outputs found

    Small RNAs and Argonautes Provide a Paternal Epigenetic Memory of Germline Gene Expression to Promote Thermotolerant Male Fertility: A Dissertation

    Get PDF
    During each life cycle, gametes must preserve and pass on both genetic and epigenetic information, making the germline both immortal and totipotent. In the male germline the dramatic morphological transformation of a germ cell through meiosis, into a sperm competent for fertilization, while retaining this information is an incredible example of cellular differentiation. This process of spermatogenesis is inherently thermosensitive in numerous metazoa ranging from worms to man. Here, I describe the role of two redundant AGO-class paralogs, ALG-3/4, and their small RNA cofactors, in promoting thermotolerant male fertility in Caenorhabditis elegans. alg-3/4 double mutants exhibit temperature dependent sterility resulting from defective spermiogenesis, the postmeiotic differentiation of haploid spermatids into spermatozoa competent for fertilization. The essential Argonaute CSR-1 functions with ALG-3/4 to positively regulate target genes required for spermiogenesis by promoting transcription via a small RNA positive feedback loop. Our findings suggest that ALG-3/4 functions during spermatogenesis to amplify a small-RNA signal loaded into CSR-1 to maintain transcriptionally active chromatin at genes required for spermiogenesis and to provide an epigenetic memory of male-specific gene expression. CSR-1, which is abundant in mature sperm, appears to transmit this memory to offspring. Surprisingly, in addition to small RNAs targeting male-specific genes, we show that males also harbor an extensive repertoire of CSR-1 small RNAs targeting oogenesis-specific mRNAs. The ALG-3/4 small RNA pathway also initiates silencing small RNA signals loaded into WAGO vii Argonautes, which function to posttranscripitonally silence their target mRNAs. Silencing WAGO/small RNA-complexes are present in sperm and presumably transmitted to offspring upon fertilization. Together these findings suggest that C. elegans sperm transmit not only the genome but also epigenetic activating and silencing signals in the form of Argonaute/small-RNA complexes, constituting a memory of gene expression in preceding generations

    Effects of larval density on gene regulation in C. elegans during routine L1 synchronization [preprint]

    Get PDF
    Bleaching gravid C. elegans followed by a short period of starvation of the L1 larvae is a routine method performed by worm researchers for generating synchronous populations for experiments. During the process of investigating dietary effects on gene regulation in L1 stage worms by single-worm RNA-Seq, we found that the density of resuspended L1 larvae affects expression of many mRNAs. Specifically, a number of genes related to metabolism and signalling are highly expressed in worms arrested at low density, but are repressed at higher arrest densities. We generated a GFP reporter strain based on one of the most density-dependent genes in our dataset – lips-15 – and confirmed that this reporter was expressed specifically in worms arrested at relatively low density. Finally, we show that conditioned media from high density L1 cultures was able to downregulate lips-15 even in L1 animals arrested at low density, and experiments using the daf-22 mutant demonstrated that this effect is not mediated by the ascaroside family of signalling pheromones. Together, our data implicate a soluble signalling molecule in density sensing by L1 stage C. elegans, and provide guidance for design of experiments focused on early developmental gene regulation

    Flexibility and constraint in preimplantation gene regulation in mouse [preprint]

    Get PDF
    Although many features of embryonic development exhibit remarkable stability in the face of environmental perturbations, it is also clear that some aspects of early embryogenesis can be modulated by non-genetic influences during and after fertilization. Among potential perturbations experienced during reproduction, understanding the consequences of differing ex vivo fertilization methods at a molecular level is imperative for comprehending both the basic biology of early development and the potential consequences of assisted reproduction. Here, we set out to explore stable and flexible aspects of preimplantation gene expression using single-embryo RNA-sequencing of mouse embryos fertilized by natural mating, in vitro fertilization, or intracytoplasmic sperm injection, as well as oocytes parthenogenetically activated to develop (parthenotes). This dataset comprises a resource of over eight hundred individual embryos, which we use for three primary analyses. First, we characterize the effects of each fertilization method on early embryonic gene regulation, most notably finding decreased expression of trophectoderm markers at later stages of preimplantation development in ICSI embryos. Second, we find massive gene misregulation in parthenotes beyond the expected defects in imprinted gene expression, and show that many of these changes can be suppressed by sperm total RNA. Finally, we make use of the single-embryo resolution of our dataset to identify both stably-expressed genes and highly-variable genes in the early mouse embryo. Together, our data provide a detailed survey of the molecular consequences of different fertilization methods, establish parthenotes as a “tabula rasa” for understanding the role for sperm RNAs in preimplantation gene regulation, and identify subtypes of preimplantation embryos based on their expression of epivariable gene modules

    Cytosine methylation dynamics during post-testicular sperm maturation in mammals [preprint]

    Get PDF
    Beyond the haploid genome, mammalian sperm contribute a payload of epigenetic information which can modulate offspring phenotypes. Recent studies have shown that the small RNA payload of sperm undergoes extensive remodeling during post-testicular maturation in the epididymis. Intriguingly, epididymal maturation has also been linked to changes in the sperm methylome, suggesting that the epididymis might play a broader role in remodeling the sperm epigenome. Here, we build on prior studies of the maturing sperm methylation landscape, further characterizing the genome-wide methylation landscape in seven germ cell populations collected from throughout the male reproductive tract. Overall, we find very few changes in the cytosine methylation landscape between testicular germ cell populations and cauda epididymal sperm, demonstrating that the sperm methylome is largely stable throughout post-testicular maturation. Intriguingly, although our sequencing data suggested that caput epididymal sperm exhibit a highly unusual methylome, follow-up studies revealed that this resulted from contamination of caput sperm by extracellular DNA. Extracellular DNA formed web-like structures that ensnared sperm, was present only in the caput epididymis of virgin males, where it was associated with citrullinated histone H3 and presumably resulted from a PAD-driven genome decondensation process. Taken together, our data emphasize the stability of the cytosine methylation landscape in mammalian sperm, and identify a surprising but transient period during which immature sperm are associated with extracellular DNA

    Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network

    Get PDF
    We present the first gene regulatory network (GRN) that pertains to post-developmental gene expression. Specifically, we mapped a transcription regulatory network of Caenorhabditis elegans metabolic gene promoters using gene-centered yeast one-hybrid assays. We found that the metabolic GRN is enriched for nuclear hormone receptors (NHRs) compared with other gene-centered regulatory networks, and that these NHRs organize into functional network modules.The NHR family has greatly expanded in nematodes; C. elegans has 284 NHRs, whereas humans have only 48. We show that the NHRs in the metabolic GRN have metabolic phenotypes, suggesting that they do not simply function redundantly.The mediator subunit MDT-15 preferentially interacts with NHRs that occur in the metabolic GRN.We describe an NHR circuit that responds to nutrient availability and propose a model for the evolution and organization of NHRs in C. elegans metabolic regulatory networks

    RNAi Effector Diversity in Nematodes

    Get PDF
    While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes

    The Transmission of Intergenerational Epigenetic Information by Sperm microRNAs

    No full text
    Epigenetic information is transmitted from one generation to the next, modulating the phenotype of offspring non-genetically in organisms ranging from plants to mammals. For intergenerational non-genetic inheritance to occur, epigenetic information must accumulate in germ cells. The three main carriers of epigenetic information—histone post-translational modifications, DNA modifications, and RNAs—all exhibit dynamic patterns of regulation during germ cell development. For example, histone modifications and DNA methylation are extensively reprogrammed and often eliminated during germ cell maturation and after fertilization during embryogenesis. Consequently, much attention has been given to RNAs, specifically small regulatory RNAs, as carriers of inherited epigenetic information. In this review, we discuss examples in which microRNAs have been implicated as key players in transmitting paternal epigenetic information intergenerationally

    Effects of Larval Density on Gene Regulation in Caenorhabditis elegans During Routine L1 Synchronization

    Get PDF
    Bleaching gravid C. elegans followed by a short period of starvation of the L1 larvae is a routine method performed by worm researchers for generating synchronous populations for experiments. During the process of investigating dietary effects on gene regulation in L1 stage worms by single-worm RNA-Seq, we found that the density of resuspended L1 larvae affects expression of many mRNAs. Specifically, a number of genes related to metabolism and signaling are highly expressed in worms arrested at low density, but are repressed at higher arrest densities. We generated a GFP reporter strain based on one of the most density-dependent genes in our dataset – lips-15 – and confirmed that this reporter was expressed specifically in worms arrested at relatively low density. Finally, we show that conditioned media from high density L1 cultures was able to downregulate lips-15 even in L1 animals arrested at low density, and experiments using daf-22 mutant animals demonstrated that this effect is not mediated by the ascaroside family of signaling pheromones. Together, our data implicate a soluble signaling molecule in density sensing by L1 stage C. elegans, and provide guidance for design of experiments focused on early developmental gene regulation

    MicroRNAs Absent in Caput Sperm Are Required for Normal Embryonic Development

    No full text
    Zhou et al. (2019) report that embryos generated using sperm from the caput epididymis are fully capable of supporting full-term development, in contrast to our recent article (Conine et al., 2018). They also suggest that successful development of embryos generated using detergent-extracted sperm argues against the possibility that sperm delivers functional microRNAs (miRNAs) to the embryo. However, as several groups have demonstrated that sperm miRNAs are largely unaffected even by heavy detergent washes (Sharma et al., 2018,Yan et al., 2008), this experiment is not informative. We therefore focus on the primary finding of Zhou et al.: that embryos generated via intracytoplasmic sperm injection (ICSI) using caput epididymal sperm are viable and develop to term, which contrasts with Figures 3 and 7 of Conine et al., where we report that caput-derived embryos implant inefficiently and fail to develop further

    Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice

    Get PDF
    The small RNA payload of mammalian sperm undergoes dramatic remodeling during development, as several waves of microRNAs and tRNA fragments are shipped to sperm during post-testicular maturation in the epididymis. Here, we take advantage of this developmental process to probe the function of the sperm RNA payload in preimplantation development. We generated zygotes via intracytoplasmic sperm injection (ICSI) using sperm obtained from the proximal (caput) versus distal (cauda) epididymis and then characterized the development of the resulting embryos. Embryos generated using caput sperm significantly overexpress multiple regulatory factors throughout preimplantation development, subsequently implant inefficiently, and fail soon after implantation. Remarkably, microinjection of purified cauda-specific small RNAs into caput-derived embryos not only completely rescued preimplantation molecular defects but also suppressed the post-implantation embryonic lethality phenotype. These findings reveal an essential role for small RNA remodeling during post-testicular maturation of mammalian sperm and identify a specific preimplantation gene expression program responsive to sperm-delivered microRNAs
    corecore