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ABSTRACT 

 

During each life cycle, gametes must preserve and pass on both genetic and 

epigenetic information, making the germline both immortal and totipotent. In the male 

germline the dramatic morphological transformation of a germ cell through meiosis, into 

a sperm competent for fertilization, while retaining this information is an incredible 

example of cellular differentiation. This process of spermatogenesis is inherently 

thermosensitive in numerous metazoa ranging from worms to man. Here, I describe the 

role of two redundant AGO-class paralogs, ALG-3/4, and their small RNA cofactors, in 

promoting thermotolerant male fertility in Caenorhabditis elegans. alg-3/4 double 

mutants exhibit temperature dependent sterility resulting from defective spermiogenesis, 

the postmeiotic differentiation of haploid spermatids into spermatozoa competent for 

fertilization. The essential Argonaute CSR-1 functions with ALG-3/4 to positively 

regulate target genes required for spermiogenesis by promoting transcription via a small 

RNA positive feedback loop. Our findings suggest that ALG-3/4 functions during 

spermatogenesis to amplify a small-RNA signal loaded into CSR-1 to maintain 

transcriptionally active chromatin at genes required for spermiogenesis and to provide an 

epigenetic memory of male-specific gene expression. CSR-1, which is abundant in 

mature sperm, appears to transmit this memory to offspring. Surprisingly, in addition to 

small RNAs targeting male-specific genes, we show that males also harbor an extensive 

repertoire of CSR-1 small RNAs targeting oogenesis-specific mRNAs. The ALG-3/4 

small RNA pathway also initiates silencing small RNA signals loaded into WAGO 



vii

Argonautes, which function to posttranscripitonally silence their target mRNAs. 

Silencing WAGO/small RNA-complexes are present in sperm and presumably 

transmitted to offspring upon fertilization. Together these findings suggest that C. elegans 

sperm transmit not only the genome but also epigenetic activating and silencing signals in 

the form of Argonaute/small-RNA complexes, constituting a memory of gene expression 

in preceding generations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii

TABLE OF CONTENTS 
 

 

TITLE PAGE  ii  

SIGNATURE PAGE  iii      

ACKNOWLEDGEMENTS          iv  

ABSTRACT                            vi  

TABLE OF CONTENTS                                                                                               viii  

LIST OF FIGURES  xi 

LIST OF TABLES                                                                                                          xiii 

PREFACE                 xiv 

CHAPTER I: THE C. ELEGANS GERMLINE: A SMALL RNA WORLD        1 

 Introduction                2 

 Small RNAs best friend: Argonaute             4 

 The beginning: RNAi               7 

 The actual beginning: miRNAs              10 

 piRNAs: Surveyors of germline RNAs            15 

 CSR-1: Master regulator of the C. elegans germline           29 

 The ERI Endogenous Small RNA Pathway: Sperm and Egg          35 

CHAPTER II: The ARGONAUTES ALG-3 AND ALG-4 ARE REQUIRED FOR 
SPERMATOGENESIS-SPECIFIC 26G-RNAS AND THERMOTOLERANT SPERM 
IN C. ELEGANS                                                                                                               42 
  

Summary                43 

 Introduction                44 



ix

 Results                 46 

 Mutations in the alg-3/4 AGOs result in male-associated  
 temperature sensitive sterility             46 

 
 ALG-3 is expressed in the region of the germline undergoing       

spermatogenesis              52 
 
 alg-3/4 double mutants exhibit defects in spermatogenesis and 

spermiogenesis              55 
 

A class of sperm-­‐specific 26G-­‐RNAs requires alg-­‐3 and alg-­‐4 59

wago-1 and alg-3/4-dependent 22G-RNAs are expressed in mature     
spermatids               65 

  

Discussion                67 

 AGOs, temperature sensitive sterility, and P granules         70 

  Adaptation to temperature and small RNA pathways          71 

 Experimental procedures              73 

CHAPTER III: ARGONAUTES PROMOTE TRANSCRIPTION IN THE MALE 
GERMLINE AND PROVIDE A PATERNAL MEMORY OF GERMLINE GENE 
EXPRESSION IN C. ELEGANS              76 
 
 Summary                77 

 Introduction                78 

 Results                 82 

  Ultrastructural characterization of the alg-3/4 mutant spermiogenic  
Defect                82 
 
The previously identified fer genes function in the ALG-3/4 pathway    85 

   
Target regulation by ALG-3/4 and 26G-RNAs          88 

  
 ALG-3/4 promotes the transcription of target genes          98 

   



x

            CSR-1 acts in the ALG-3/4 pathway to promote  
            sperm development                                                                                   103 

  
CSR-1 22G-RNAs target genes also targeted by  
ALG-3/4 26G-RNAs                                                                                105 

   
  CSR-1 promotes the expression of ALG-3/4 targets                               107

   
 
  CSR-1 and ALG-3/4 provide a paternal memory of  
                        past gene expression             112 
 

Discussion               115 
 

A small RNA feed-forward loop transmits a paternal  
epigenetic memory of past gene expression           115 

 
  A protective role for piRNAs across phyla          118 

  Whole-genome surveillance by Argonaute/small-RNA pathways          120 
  

Experimental Procedures             123 
 
CHAPTER IV: SPERM DEVELOPMENT, TEMPERATURE,  
AND SMALL RNAS               132
        
 Overview of Research              133 

 Connecting the dots between chapters II and III          135 

 To promote transcriptionally or to silence postranscriptionally        139 

 Other small RNAs in the male germline           145 

 The FER/ERI mutants and their male germline defects         148 

 Why is Sperm Development Sensitive to Temperature?         149 

 Small RNAs as Carriers of Epigenetic Information          152 

 Conclusion               155 

BIBLIOGRAPHY               159 



xi

LIST OF FIGURES 

 

Figure 1.1 The RNAi and miRNA pathways in C. elegans           14 

Figure 1.2 Endogenous small RNA pathways in the C. elegans hermaphrodite      
germline/oocyte               34 

 
Figure 1.3 The ALG-3/4 sperm 26G-RNA pathway            40 
 
Figure 2.1 Amino acid alignment and gene models for alg-3 and alg-4          48 
 
Figure 2.2 alg-3/4 mutants exhibit temperature sensitive sterility associated  
                      with the male germline               50 
 
Figure 2.3 The temperature sensitive period for alg-3/4 double mutants          51 
 
Figure 2.4 GFP::ALG-3 is expressed during spermatogenesis           53 
 
Figure 2.5 ALG-3 is expressed during spermatogenesis            54 
 
Figure 2.6 alg-3/4 mutants exhibit defects in sperm activation           57 
 
Figure 2.7 alg-3/4 mutant defects in spermatogenesis            58 
 
Figure 2.8 Analysis of 26G-RNA expression and targeting           63 
 
Figure 2.9 26G-RNA distribution on targets             64 
 
Figure 2.10 Analysis of Small RNA pathways in mature sperm           66 
 
Figure 2.11 Model of ALG-3/4 and WAGO-1 expression during  
 sperm development               69 
 
Figure 3.1 Ultrastructural analysis of alg-3/4 spermatozoa           84 
 
Figure 3.2 Identification of fer genes as ALG-3/4 pathway components          87 
 
Figure 3.3 ALG-3/4 positively and negatively regulates hundreds of  
 target mRNAs                 93 
 
Figure 3.4 Quantitative proteomic analysis of ALG-3/4 target in  
 isolated sperm                94 



xii

 
Figure 3.5 Target mRNA regulation by ALG-3/4 and CSR-1           96 
 
Figure 3.6 ALG-3/4 positively-regulates genes required for spermiogenesis         97 
 
Figure 3.7 ALG-3/4 promote transcription and CSR-1 nuclear localization in 

condensing meiotic nuclei            101 
 
Figure 3.8 ALG-3/4 negatively-regulated targets are silenced by the WAGO small 

RNA pathway              102 
 
Figure 3.9 CSR-1 associates with both male- and female-specific small RNAs in 

males and positively regulates spermiogenic gene expression       109 
 
Figure 3.10 ALG-3/4/CSR-1 pathway mutants exhibit defects in spermatogenic 

chromatin condensation and transcription          111 
 
Figure 3.11 ALG-3/4 and CSR-1 provide a paternal memory of germline gene 

expression              114 
 
Figure 3.12 Model for ALG-3/4 and CSR-1 function in the male germline       117 
 
Figure 4.1 5´ or 3´ biased targeting by ALG-3/4 26G-RNAs is not predictive  
 of the regulatory outcome on that target mRNA                               138

     
Figure 4.2     WAGO Argonautes in the male germline          144 
 
Figure 4.3 Genes targeted by endogenous small RNA pathways  
 in the male germline             147 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



xiii

LIST OF TABLES 
 
 
 

Table 1 Small RNA pathways in the C. elegans germline                      41 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



xiv

PREFACE 
 

 
The chapters of this dissertation have appeared in separate publications: 
 
Conine, C.C., Batista, P.J., Gu, W., Claycomb, J.M., Chaves, D.A., Shirayama, M., and 
Mello, C.C. (2010). Argonautes ALG-3 and ALG-4 are required for spermatogenesis-
specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. PNAS 107, 
3588-3593 
 
Conine, C.C., Moresco, J.J., Gu, W., Shirayama, M., Conte, D., Jr., Yates, J.R., 3rd, and 
Mello, C.C. (2013). Argonautes Promote Male Fertility and Provide a Paternal Memory 
of Germline Gene Expression in C. elegans. Cell 155, 1532-1544 
 
 
For the sperm proteomic data presented in chapter III we collaborated with James 
Moresco from John Yates’ lab at The Scripps Research Institute in La Jolla, California. 
James performed Multidimensional Protein Identification Technology on sperm protein 
samples to quantitate the proteins present.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xv

 
 
 
 
 
 



1

 

 

 

CHAPTER I 

 

 

The C. elegans Germline: A Small RNA World 

 

 

 

 

 

 

 

 

 

 

 

 

 



2

Introduction 

The idea that life originated from self-replicating RNA molecules 

assembled from the ‘primordial soup’ present on primitive Earth was first 

described nearly 50 years ago by Francis Crick, Leslie Orgel, and Carl Woese 

(Crick, 1968; Orgel, 1968; Woese, 1967). After the discovery of catalytic RNAs, 

or ribozymes, in the 1980s the idea gained undeniable recognition and was 

termed ‘The RNA World’ hypothesis (Gilbert, 1986). Since then hundreds of 

different ribozymes have been isolated with diverse activities, including self-

replicating RNAs and RNAs with the ability to catalyze peptide bond formation, 

ultimately resulting in protein synthesis (Bartel and Unrau, 1999; Cech, 2009).  

In the late 1990s the field of RNA biology exploded again with the 

discovery of RNA interference (RNAi) in the nematode Caenorhabditis elegans, 

wherein double-stranded RNA molecules processed into small interfering RNAs 

(siRNAs) repress gene expression of mRNAs with complementary nucleotide 

sequence (Fire et al., 1998; Zamore et al., 2000). In parallel this phenomenon 

was described in plants (Hamilton and Baulcombe, 1999), and subsequently 

discovered to be present in fungi, protists, and most metazoans, including 

humans (Cerutti and Casas-Mollano, 2006; Elbashir et al., 2001). siRNAs can 

repress gene expression by affecting mRNA stability, mRNA translation, or 

mRNA synthesis through changes in chromatin structure, depending on the 

organism and the molecular machinery present (Denli and Hannon, 2003).  
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Shortly thereafter it was realized that nearly all eukaryotes harness the 

power and machinery of RNAi to regulate the expression of genomically encoded 

mRNAs, to regulate a vast array of biological process including but not limited to, 

developmental timing, meiosis, and cellular differentiation. Cells employ 

endogenous RNAi (endo-RNAi) by generating small RNAs from genomically 

encoded double stranded RNAs in the case of endo-siRNAs, genomically 

encoded hairpin RNAs in the case of microRNAs (miRNAs), nucleolytic 

processing of longer RNA transcripts in the case of piRNAs, and by RNA-

dependent-RNA polymerases that can generate small RNAs de novo from an 

RNA template (Ghildiyal and Zamore, 2009).  

Recently, it has been demonstrated that endogenous small RNAs are 

present in the gametes of plants and numerous metazoans, including worms, 

flies, mice, and humans (Conine et al., 2010; Garcia-Lopez et al., 2014; Grant-

Downton et al., 2009; Gu et al., 2009; Krawetz et al., 2011; Malone et al., 2009; 

Peng et al., 2012; Stoeckius et al., 2014; Tam et al., 2008; Watanabe et al., 

2006). In the gametes, small RNAs can act as carriers of epigenetic information 

delivered during fertilization, through the regulation of transcripts important for 

the early embryo, producing phenotypes that persist across development 

(Brennecke et al., 2008; Burton et al., 2011; Liu et al., 2012). Small RNAs can 

even be transmitted through the gametes across multiple generations, to elicit 

regulatory outcomes and phenotypes transgenerationally (Alcazar et al., 2008; 

Ashe et al., 2012; Buckley et al., 2012; Conine et al., 2013; Fang et al., 2012; 
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Gapp et al., 2014; Jablonka and Raz, 2009; Shirayama et al., 2012). Epigenetic 

inheritance of small RNAs could potentially explain some cases of inheritance, 

where phenotypic traits that cannot be explained by genotypic polymorphisms 

are clearly transmitted from parent to progeny (genetic inheritance) (Maher, 

2008). Whether the ‘RNA World’ existed or not may be impossible to scientifically 

prove, however, it is clear that RNA can no longer be viewed merely as a 

transient carrier of information from DNA to protein, or as a structural entity in 

tRNAs or rRNAs, but now must be viewed as a master regulator of all aspects of 

cellular and developmental biology. No place is this more evident than where 

RNAi was originally discovered: the C. elegans germline, where a ‘Small RNA 

World’ dictates almost all aspects of its biology. Here, I describe the various roles 

of small RNA pathways in silencing foreign genetic elements, promoting the 

expression of essential germline genes, and promoting both male and female 

fertility. To do so, I will describe the factors and mechanisms involved in the 

biogenesis of each class of small RNA and the Argonautes they are associated 

with. Where applicable I will relate the worm small RNA pathways to analogous 

pathways in other organisms, particularly mammals. 

 

Small RNA’s best friend: Argonaute 

Small RNAs can be defined by numerous physical properties, as well as 

by the machinery required for their synthesis. However, the most defining 

character for any small RNA is the Argonaute protein it associates with. 
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Argonautes are the direct binding partners of small RNAs and are required to 

impose regulatory outcomes when the Argonaute/small RNA complex finds a 

target RNA through complementary base pairing with the small RNA or ‘guide’. 

Therefore, Argonautes are at the heart of all small RNA pathways and actually 

define the functional outcome of the small RNA that is bound. 

 The Argonaute protein family was first identified in plants as being 

important for development, with the mutants resembling an argonaute squid, 

hence the name (Bohmert et al., 1998), and in Drosophila melanogaster as being 

required for germline stem-cell division (Lin and Spradling, 1997). Argonautes 

were first associated with small RNA pathways in C. elegans through genetic 

screens for mutants deficient for RNAi, where the Argonaute gene rde-1 was 

found to be absolutely required for RNAi (Tabara et al., 1999). Later it was shown 

that Argonautes directly interact with the small RNA and use it as a guide to find 

target RNAs with complementary sequences (Wang et al., 2008a; Wang et al., 

2008b). 

 Argonautes are ~100kDa highly basic proteins that are characterized by 

having PAZ (Piwi-Argonaute-Zwille), MID (middle) and Piwi domains. Based on 

structural studies the PAZ domain anchors the 3ʹ′ end of the small RNA while the 

MID domain binds the 5ʹ′ end. The Piwi domain, which is structurally similar to 

RNase H, can act as an endonuclease (slicer) to cleave (slice) target RNAs 

through a DDX catalytic triad (X can be H or D) of amino acids (Meister, 2013). 

Using these credentials, Argonautes have been identified (and found associated 
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with small RNA pathways) across all forms of life including plants, archaea, 

bacteria, fungi, and metazoa (Cerutti and Casas-Mollano, 2006; Makarova et al., 

2009), suggesting that Argonautes and small RNA pathways might have been 

present in the last universal common ancestor. 

 Eukaryotic Argonaute proteins can be separated into 3 phylogenetic 

clades (Tolia and Joshua-Tor, 2007): AGO, Piwi, and worm-specific Argonautes 

(WAGO). The AGO clade, based on homology to Arabidopsis thaliana AGO1, 

includes all of the plant Argonautes, the human Argonautes AGOs-1-4, the C. 

elegans miRNA effectors ALG-1/2, and primary endogenous small RNA effectors 

ALG-3/4 (described below). The Piwi clade, based on homology to Drosophila 

Piwi, interact exclusively with a type of endogenously encoded small RNAs 

termed piRNAs (for Piwi-interacting RNAs), expressed predominantly in the 

germline of metazoans, but also present in protists. The C. elegans Argonautes 

PRG-1/2 (described in detail below) are members of the Piwi clade. Finally, the 

WAGO clade is an expanded family of worm-specific Argonautes (Yigit et al., 

2006), many of which lack one or more of the DDX residues in the Piwi domain 

(Joshua-Tor and Hannon, 2011). Of 27 annotated Argonaute genes in C. 

elegans, 12 encode WAGO Argonautes (Gu et al., 2009; Yigit et al., 2006). 
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The beginning: RNAi 

RNAi can be induced experimentally in the C. elegans germline by direct 

injection of double-stranded RNA (dsRNA) (Fire et al., 1998), soaking worms in 

dsRNA (Tabara et al., 1998), feeding with bacteria expressing dsRNA (Timmons 

and Fire, 1998), or by expressing a transgene that produces dsRNA 

(Tavernarakis et al., 2000). RNAi in worms is systemic: after initial exposure to 

dsRNA, the silencing signal can spread throughout the body (including the 

germline) of the animal (Fire et al., 1998). The silencing signal can also be 

inherited (Vastenhouw et al., 2006). Most worm germline-expressed mRNAs 

appear to be susceptible to RNAi triggered by any of the four methods, with the 

exception of mRNAs expressed during spermatogenesis, which are refractory to 

RNAi for currently unknown reasons (Kamath et al., 2003; Reinke et al., 2004). 

One hypothesis for the inability of sperm genes to be silenced by RNAi is that 

some components of the RNAi pathway are also used for endogenous small 

RNA pathways functioning during spermatogenesis, leading to competition 

between the pathways ((Conine et al., 2010; Duchaine et al., 2006; Han et al., 

2009; Kennedy et al., 2004; Pavelec et al., 2009; Welker et al., 2010; Yigit et al., 

2006), see below). 

 To elicit the silencing response the dsRNA is first recognized by a dsRNA 

binding protein RDE-4 and the RNase III related enzyme Dicer (DCR-1) that 

‘Dices’ (endonucleolytic cleavage) the dsRNA into 21-23nt primary (1°) siRNAs, 

that have a 5ʹ′ monophosphate and a 3ʹ′ hydroxyl (Ketting et al., 2001; Tabara et 
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al., 2002) (Figure 1.1 and Table 1). Dicer is a highly conserved enzyme required 

for the vast majority of exogenous RNAi pathways and for some endogenous 

RNAi-related pathways ((Cerutti and Casas-Mollano, 2006), see below). For 

example, in C. elegans DCR-1 is the only Dicer and is essential for both RNAi 

and miRNA pathways (Grishok et al., 2001; Ketting et al., 2001; Knight and Bass, 

2001; Tabara et al., 2002). 

 After processing by Dicer, 1° siRNAs are loaded onto the Argonaute RDE-

1 (Tabara et al., 1999; Yigit et al., 2006), which then uses the sequence of the 

small RNA as a guide to basepair with RNA targets. Upon finding a target RNA 

with complementarity to the small RNA loaded in the Argonaute, RDE-1 recruits 

a multi-protein molecular machine containing an RNA-dependent-RNA 

polymerase (RdRP) (Figure 1.1). This machine uses the target RNA as a 

template to synthesize secondary (2°) small RNAs named 22G-RNAs, which are 

predominantly 22 nt long with a triphosphorylated guanosine at the 5ʹ′ end (Pak 

and Fire, 2007; Sijen et al., 2007; Yigit et al., 2006) (Table 1). In the germline, 

22G-RNAs are produced by a combination of two RdRPs, RRF-1 and EGO-1 

(Gu et al., 2009). This secondary small RNA production step acts to amplify the 

siRNA response (Pak and Fire, 2007; Sijen et al., 2007; Yigit et al., 2006) (Figure 

1.1). The 2° small RNAs are loaded onto WAGO Argonautes, WAGO-(1-12), as it 

requires removing all 12 of these WAGO genes to fully disrupt the RNAi 

response (Gu et al., 2009). The molecular mechanism for how these Argonautes 
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function to repress the expression of mRNAs is unknown, especially since many 

lack the catalytic residues for slicer activity. 

 In C.elegans the induction of germline RNAi leads to the inherited 

silencing of the target RNA for at least 3-4 generations and in some cases upon 

selection, indefinitely (Alcazar et al., 2008; Claycomb et al., 2009; Grishok et al., 

2000; Luteijn et al., 2012; Shirayama et al., 2012; Vastenhouw et al., 2006; Ashe, 

et al., 2012). Long-term silencing (>4 generations) requires the nuclear RNAi 

pathway, and the Argonaute WAGO-9/HRDE-1. In this pathway WAGO-9 loaded 

with 22G-RNAs amplified from the initially dsRNA targeted locus, enters the 

nucleus and along with the NRDE (nuclear RNAi deficient) machinery recruits 

chromatin modifying enzymes that mark the gene of the targeted RNA with 

silencing Histone H3 Lysine 9 methylation (H3K9me) marks (Buckley et al., 2012; 

Burkhart et al., 2011; Guang et al., 2008; Ashe et al., 2012; Luteijn et al., 2012; 

Shirayama et al., 2012) (Figure 1.1). This silencing can then be inherited 

indefinitely (>30 generations) through transmission of the silenced chromatin and 

small RNAs (Ashe et al., 2012; Claycomb et al., 2009; Gassmann et al., 2012; 

Luteijn et al., 2012; Shirayama et al., 2012).  

 The systemic and heritable properties of RNAi are characteristics of RNAi 

in both nematodes and plants, perhaps consistent with the presence of RdRP in 

both lineages (Calarco and Martienssen, 2011; Dunoyer et al., 2010; Van Ex et 

al., 2011). The heritability of experimentally induced RNAi has yet to be explored 
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in many organisms, but may yet be found in other forms of life, as it’s becoming 

clear that gametes can transmit small RNAs. 

 

The actual beginning: miRNAs 

In the early 1990’s before the discovery and characterization of RNAi, 

Victor Ambros and Gary Ruvkun’s laboratories determined that a 

posttranscriptional repressor of lin-14 (an important regulator of postembryonic 

development in C. elegans), lin-4 was actually a noncoding small RNA gene (Lee 

et al., 1993; Wightman et al., 1993). It was shown previously that lin-4 temporally 

controlled postembryonic development by negatively regulating LIN-14 protein 

levels (Ambros, 1989). Interestingly, along with the discovery that lin-4 encodes a 

small RNA, they also found that the lin-14 mRNA 3ʹ′ UTR contained 7 stretches of 

10 nt complementarity to lin-4, and that these sequences were required for the 

posttranscriptional regulation of lin-14 by lin-4 (Lee et al., 1993; Wightman et al., 

1993). They went on to postulate that the posttransriptional or translational 

regulation of lin-14 by lin-4 small RNA occurred by an antisense mechanism 

where lin-4 binds to its complementary sites in the lin-14 3ʹ′ UTR.  

With the discovery of a second genomically encoded small RNA that 

regulates C. elegans development, let-7, which is conserved in Drosophila and 

humans (Pasquinelli et al., 2000; Reinhart et al., 2000), genomically encoded 

regulatory small RNAs with biological functions were discovered in organisms 

ranging from plants to mammals, and were named microRNAs (miRNAs) (Lagos-
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Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001; Reinhart et al., 

2002). Prior to that it was also demonstrated in C. elegans that Dicer, and the 

Argonautes ALG-1 and ALG-2, are required for the maturation and function of 

both the let-7 and lin-4 miRNAs (Grishok et al., 2001). These findings set the 

groundwork for defining the miRNA pathway across phyla, which is now 

intimately connected with most aspects of biology. 

 miRNAs are genomically encoded 21-23 nt small RNAs that are 

processed from short dsRNA hairpins occurring in long primary transcripts (pri-

mRNAs) or from the introns of pre-mRNAs (Cai et al., 2004; Lee et al., 2002; Lee 

et al., 2004; Ruby et al., 2007) (Figure 1.1). Maturation of a pri-miRNA into a 

miRNA requires two processing steps. In the nucleus, a pri-mRNA transcript is 

processed by the RNAse III-related endonuclease Drosha into a 60-70nt long 

pre-miRNA (Denli et al., 2004; Lee et al., 2003). A correctly processed pre-

miRNA is bound by Exportin-5 and transported to the cytoplasm (Yi et al., 

2003)(Figure 1.1). In the cytoplasm, the loop of the pre-miRNA hairpin is 

removed by Dicer, creating a dsRNA duplex approximately 22nt in length with 5ʹ′ 

monophosphate and 3ʹ′ hydroxyl groups (Hutvagner et al., 2001)  (Table 1). One 

strand, the mature miRNA or guide strand, is then loaded into Argonaute 

(Chendrimada et al., 2005; Grishok et al., 2001; Hutvagner et al., 2001; Martinez 

et al., 2002; Saito et al., 2005; Schwarz et al., 2002) (Figure 1.1). The other 

strand, known as miRNA* or passenger strand, is normally released and 

degraded. In some cases, however, mature miRNAs are generated from both 
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arms of the pre-miRNA hairpin. The choice of miRNA strand loaded into 

Argonaute is largely determined by the thermodynamic properties of the 

miRNA/miRNA* duplex (Khvorova et al., 2003; Schwarz et al., 2003). 

 Argonaute then uses the miRNA as a guide to find target RNAs with 

complementary sequences. When a target site with extensive sequence 

complementarity is bound, animal miRNAs can direct Argonaute catalyzed 

nucleolytic cleavage of the RNA (Hutvagner and Zamore, 2002; Song et al., 

2004; Yekta et al., 2004). Targets like this are rare in animals. More commonly, 

complementarity between nucleotides 2-7 of the miRNA, known as the ‘seed’ 

sequence, and a target mRNA is sufficient to direct mRNA destabilization or 

translation repression (Bartel, 2009; Lai, 2002) (Figure 1.1). Therefore, a given 

miRNA can direct the regulation of multiple target RNAs resulting in most RNAs 

being regulated by miRNAs in some context (Friedman et al., 2009).  

In C. elegans miRNAs are loaded onto the AGO-clade Argonautes ALG-1 

and ALG-2, which are also required for the maturation of pre-miRNAs into mature 

miRNAs (Figure 1.1). They are at least partially redundant: mutants lacking either 

gene produce only mild phenotypes, while a mutant lacking both genes is lethal 

at the embryo or early larval stages of development (Grishok et al., 2001). The C. 

elegans genome encodes 159 miRNAs, nearly all of which are conserved in 

related nematodes, but only half of which share sequence homology with 

miRNAs encoded by the fly and human genomes (Ibanez-Ventoso et al., 2008; 

Lim et al., 2003). In the worm, the only microRNA or miRNA family (miRNAs with 
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related seed sequences) that is clearly enriched in the germline is mir-35-42, 

which is the most highly expressed microRNA in oocytes (Alvarez-Saavedra and 

Horvitz, 2010; Gu et al., 2009; Wu et al., 2010). Consistent with mir-35-42 

expression in oocytes, embryonic lethality (Alvarez-Saavedra and Horvitz, 2010), 

low fecundity (McJunkin and Ambros, 2014), and RNAi hypersensitivity (Massirer 

et al., 2012) of mir-35-42 mutants show a partial maternal rescue. Interestingly, 

maternal and early embryonic expression of mir-35-42 is required to promote full 

sperm production and function; thus, microRNA expression in the female 

germline promotes development of the male germline in the subsequent 

generation (McJunkin and Ambros, 2014). The mir-35-42 family sequence does 

not share homology with any fly or human miRNAs (Ibanez-Ventoso et al., 2008). 

miR-34c, on the other hand, is conserved in mammals and worms and is 

expressed in sperm. In mice, miR-34 in the sperm is transmitted to the zygote, 

where it is important for the first zygotic cell division (Liu et al., 2012). mir-34 is 

abundant in C. elegans sperm, but its function in sperm is unexplored (Conine et 

al., 2010). 
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Figure 1.1. The RNAi and miRNA pathways in C. elegans 
The RNAi pathway to the left, beginning by the recognition of dsRNA in the cytoplasm 
and the miRNA pathway to the right, beginning with the transcription of a miRNA gene 
in the nucleus. 
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piRNAs: Surveyors of germline RNAs 

piRNAs (Piwi-interacting RNAs) are endogenously derived small RNAs, 

expressed predominantly in the metazoan germline. piRNAs were initially 

identified in Drosophila as rasiRNAs (repeat-associated small interfering RNAs) 

complementary to repetitive transposable element sequences (Aravin et al., 

2003; Chen et al., 2005). rasiRNAs were later named piRNAs after they were 

found to associate with Piwi-clade Argonautes (Brennecke et al., 2007; Houwing 

et al., 2007; Saito et al., 2006; Vagin et al., 2006). Shortly thereafter, piRNAs 

were identified in the testes of mammals, in association with Piwi-clade 

Argonautes (Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006a; Lau et 

al., 2006). With the advent of next generation sequencing, piRNAs have been 

identified in metazoa ranging from sponges to humans (Lau, 2010). 

Unlike miRNAs, piRNA production does not require Dicer processing 

(Vagin et al., 2006). Rather piRNAs are processed from single-stranded RNA 

precursors that may originate from transposons or repetitive sequences, non-

coding loci, or protein-coding loci, depending on the organism, cell-type, or Piwi 

protein being examined. Mutations that interfere with the biogenesis of piRNAs 

result in fertility defects in worms, flies, and mammals. 

 piRNAs have been well characterized in Drosophila and mouse model 

systems. In Drosophila, 3 classes of piRNAs exist depending on their origin (Han 

and Zamore, 2014): the first two derived from distinct genomic regions termed 
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‘piRNA clusters’ and the third from the 3ʹ′ UTRs of mRNAs. The first are piRNAs 

generated from transposon and repetitive sequences in the germline by ‘ping-

pong’ amplification. In the ping-pong model, bidirectional transcription leads to 

the production of 24-30 nt 1° piRNAs antisense to transposons that bind the 

Argonautes Aubergine (Aub) and Piwi which direct cleavage of the sense RNA. 

This cleavage generates sense piRNAs that are loaded into Argonaute 3 (Ago3), 

in turn directing cleavage of the antisense strand and generation of more 

antisense piRNAs, thus creating a feed-forward amplification loop of piRNA 

biogenesis (Brennecke et al., 2007; Gunawardane et al., 2007). This process 

occurs in the nucleus and the perinuclear ‘nuage’ (germline granules), as Piwi is 

localized to the nucleus and Aub and Ago3 to nuage. Loss of function of Piwi 

proteins and piRNAs leads to derepression of transposons and severe defects in 

gametogenesis and fertility (Klattenhoff and Theurkauf, 2008). Most Drosophila 

piRNA-pathway mutants reduce male fertility, which is linked to the massive 

overexpression of the Stellate protein encoded by a repeated gene on the X-

chromosome, leading to crystal formation in the testes (Aravin et al., 2001). 

Overexpression of Stellate in piRNA mutants is due to the loss of piRNAs derived 

from the Y-chromosome-linked Suppressor of Stellate locus, which function to 

silence Stellate in trans in the male germline (Aravin et al., 2001).  

The second type of piRNAs in Drosophila are derived from single-stranded 

RNA precursors and loaded specifically into Piwi. They are transcribed mostly 

from one piRNA cluster, the flamenco locus containing embedded transposon 
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fragments, in the somatic follicle cells of the drosophila ovary. In the soma, the 

ping-pong mechanism does not occur and the piRNA signal is not further 

amplified (Li et al., 2009; Malone et al., 2009). The flamenco locus was first 

identified as a suppressor of transposon expression in somatic follicle cells, 

supporting the evidence that piRNAs derived from this locus function to silence 

transposons (Pelisson et al., 1994). 

Finally, the third type of piRNAs, also found in ovarian somatic cells, 

derive from the 3ʹ′ UTRs of hundreds of mRNAs and are loaded onto Piwi 

(Robine et al., 2009). These 1° piRNAs do not lead to ping-pong amplification, 

and their function is mostly mysterious. Nonetheless, 3ʹ′ UTR piRNAs from the 

traffic jam (tj) mRNA may negatively regulate tj mRNA, which is elevated in piwi 

mutants (Robine et al., 2009). 

In mammals three similar classes of piRNA pathways also exist, and 

function predominantly in the male germline. Like Drosophila, most piRNAs that 

are non-genic are expressed from clusters that can exceed 100kb, with each 

cluster producing numerous piRNAs that can have overlapping sequences, 

generating an extraordinary diversity of piRNA sequences. In prenatal mice, 

piRNAs are first expressed in the primordial germ cells (PGCs) undergoing 

mitosis (Aravin et al., 2007). Here, the majority of piRNAs are derived from 

transposons, with many matching short interspersed elements (SINEs), long 

interspersed elements (LINEs), and long terminal repeat (LTR) retrotransposons. 

Although, a significant percentage of prenatal piRNAs also map to genic 
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sequences, concentrated mostly in 3ʹ′ UTRs analogous to those in Drosophlia, 

however their functions are unknown (Aravin et al., 2007; Robine et al., 2009). 

Prenatal piRNAs also named the ‘pre-pachytene’ (for their expression prior to the 

pachytene stage of meiosis) piRNAs are ~26 nts long, in the sense orientation of 

the derived RNA, and bind the Argonaute MILI, which is expressed beginning in 

the PGCs, in spermatogonial stem cells, and throughout meiosis up until the 

formation of haploid round spermatids (Aravin et al., 2006; Aravin et al., 2008; 

Aravin et al., 2007). Another Argonaute, MIWI2 is expressed specifically in PGCs 

and spermatogonial stem cells, slightly later than MILI, and binds ~28nt piRNAs 

antisense to the same transposons as MILI (Aravin et al., 2008). Sequence 

analysis of the piRNAs bound to these Argonautes indicates that ping-pong 

amplification also happens in the mouse male germline with pre-pachytene 

piRNAs, between MILI-MIWI2 and MILI-MILI (Aravin et al., 2008). MILI is 

localized to perinuclear germ granules analogous to those in Drosophila, while 

MIWI2 is expressed in the nucleus, perinuclear germ granules, and cytoplasm, 

indicating that ping-pong amplification occurs in similar cellular compartments in 

both organisms (Aravin et al., 2008) 

Loss-of-function MILI and MIWI2 mutants are sterile due to a complete 

block in spermatogenesis in the early prophase of meiosis I (Carmell et al., 2007; 

Kuramochi-Miyagawa et al., 2004). This is potentially due to increased 

expression of transposable elements, as several classes are up-regulated in the 

testes of MILI and MIWI2 mutants (Aravin et al., 2008; Aravin et al., 2007; 
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Carmell et al., 2007; Kuramochi-Miyagawa et al., 2008). In mouse, transposons 

are repressed transcriptionally via DNA methylation at promoter regions, and it 

has been shown that nuclear MIWI2 initiates transcriptional silencing 

downstream of primary targeting by MILI by promoting the deposition of these 

marks through the DNA methyltransferase Dnmt3L. MILI also degrades 

transposon RNAs posttranscriptionally by utilizing piRNA guided slicer activity 

(De Fazio et al., 2011). 

During spermatogenesis, another class of mammalian piRNAs, the 

‘pachytene piRNAs’ are highly expressed beginning at the pachytene stage of 

meiosis and persisting through sperm development. Pachytene piRNAs are ~30 

nt long and interact predominantly with a third Piwi clade member MIWI, which is 

coordinately expressed during spermatogenesis (Aravin et al., 2006; Grivna et 

al., 2006a; Robine et al., 2009). MIWI is required for the production or stability of 

pachytene piRNAs, as the testes of miwi mutant mice are depleted for these 

small RNA species (Grivna et al., 2006a). MIWI is localized to the cytoplasm and 

to the perinuclear chromatoid body, which is a germ granule related to nuage in 

Drosophila and P granules in C. elegans (Beyret and Lin, 2011; Kotaja et al., 

2006; Voronina et al., 2011). Pachytene piRNAs are processed in the sense 

orientation from long-noncoding RNAs transcribed by RNA polymerase II, and 

unlike pre-pachytene piRNAs their sequences map uniquely to their genomic 

origin (Li et al., 2013). These piRNA genes are genomically located in clusters 

and their transcription is driven by the transcription factor A-MYB. A similar 
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regulatory mechanism exists in roosters, indicating the pathway predates the 

divergence of birds and mammals (Li et al., 2013). MIWI also associates with 

piRNAs derived from the 3ʹ′ UTRs of mRNAs, many overlapping with MILI (as 

mentioned above), however, the biogenesis and function of these are also 

unknown (Robine et al., 2009). 

Loss-of-function mutants for miwi are sterile as a result of a complete 

arrest at the round spermatid stage of spermiogenesis (haploid cellular 

differentiation) (Deng and Lin, 2002). The function of MIWI and pachytene 

piRNAs during spermatogenesis is a mystery. However, two conflicting 

hypotheses have been postulated. The first is that MIWI stabilizes spermiogenic 

mRNAs (mRNAs required post-meiotically) and regulates their translation, as 

MIWI interacts with mRNAs and has also been shown to interact with the 

translational machinery (Grivna et al., 2006b; Nishibu et al., 2012; Vourekas et 

al., 2012). The second is that MIWI and piRNAs through miRNA-like basepairing 

(seed recognition) are required to eliminate mRNAs during the post-meiotic 

differentiation of round spermatids to motile spermatozoa (known as 

spermiogenesis) (Gou et al., 2014). At this point, neither mechanism clearly 

explains the biological function of Miwi and pachytene piRNAs or why miwi and 

other pachytene piRNA mutants arrest at the round spermatid stage in meiosis.  

In C. elegans only one class of piRNA exists, termed 21U-RNAs because 

they are predominantly 21 nt long and begin with a uridine 5ʹ′-monophosphate 

(Table 1). The bias to begin with a uridine 5ʹ′-monophosphate is a character also 



21

exhibited in the primary piRNAs of other organisms, including flies and mammals 

(Aravin et al., 2008; Aravin et al., 2007; Batista et al., 2008; Brennecke et al., 

2007; Das et al., 2008; Robine et al., 2009). Their 3ʹ′ termini is a hydroxyl group, 

however, they are posttranscriptionally modified by 2ʹ′-O-methylation at the 3ʹ′ 

most nucleotide via the methyltransferase HENN-1 (Billi et al., 2012; Kamminga 

et al., 2012; Montgomery et al., 2012) (Table 1). This modification is also present 

at the 3ʹ′ termini of piRNAs in flies, fish and mammals, where it is deposited by 

homologs of the same enzyme (known as Hen1 in other organisms) and is 

thought to stabilize the small RNA by preventing 3ʹ′-to-5ʹ′ exonucleolytic 

processing (Houwing et al., 2007; Kamminga et al., 2010; Kirino and Mourelatos, 

2007a, b; Saito et al., 2007; Vagin et al., 2006). 

 21U-RNAs were originally identified in large-scale sequencing datasets 

as a unique class of small RNAs apparently expressed from minigenes that 

share a conserved sequence motif upstream of the 21U-RNA sequence. The loci 

are present in two broad regions on chromosome IV, with many in dense 

intergenic clusters, some near protein coding genes, and others within introns 

(Ruby et al., 2006). 21U-RNAs were identified as piRNAs, because of their 

association with the Piwi-clade Argonaute PRG-1 (Batista et al., 2008; Das et al., 

2008; Wang and Reinke, 2008) (Table 1). The C. elegans genome encodes two 

canonical Piwi Argonautes, PRG-1 and PRG-2, although PRG-2 likely has little or 

no function (Batista et al., 2008; Das et al., 2008). Like mammalian pachytene 

piRNAs, 21U-RNAs are diverse in sequence, with greater than 30,000 unique 
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small RNAs—the overwhelming majority lacking perfectly complementary 

targets.  

PRG-1 and 21U-RNAs are expressed exclusively in the male and female 

germlines. Intriguingly, PRG-1 is localized to P granules, the perinuclear germ 

granules of C. elegans, analogous to the localization of PIWIs in flies and 

mammals. Loss-of-function mutants for prg-1 exhibit a temperature sensitive (TS) 

fertility defect. At the permissive temperature of 20°C, prg-1 mutants produce 

around one-third the number of the progeny as wild type (WT), and at the non-

permissive temperature of 25°C prg-1 mutants are essentially sterile, with some 

animals producing a handful of progeny compared to the 150-200 progeny 

produced by WT at 25°C (Batista et al., 2008; Wang and Reinke, 2008). At all 

temperatures, prg-1 mutants exhibit a significant reduction in both mitotic and 

meiotic germ cells (Batista et al., 2008; Das et al., 2008). Providing WT sperm to 

prg-1 females by mating, only partially rescues the fertility phenotypes, indicating 

that the phenotype is a result of male and female germline (sperm and oocyte) 

defects (Batista et al., 2008; Das et al., 2008; Wang and Reinke, 2008). prg-1 

mutant sperm have defects in haploid post-meiotic differentiation 

(spermiogenesis), and arrest as round spermatids at 25°C (Wang and Reinke, 

2008), very similar to mouse miwi (pachytene piRNA) mutants (Deng and Lin, 

2002), suggesting that worm and mouse Piwi proteins regulate a conserved 

aspect of sperm development. 21U-RNAs require PRG-1 for their biogenesis at 

all temperatures, as 21U-RNAs are significantly depleted in prg-1 mutants 
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(Batista et al., 2008; Das et al., 2008; Wang and Reinke, 2008). These findings 

suggest that, besides maintaining the number of germ cells at all temperatures, 

PRG-1 and 21U-RNAs function to facilitate a temperature-dependent germline 

process required for normal fertility (Batista et al., 2008). 

Two types of 21U-RNAs exists, type-1 21U-RNAs generated from piRNA 

loci mostly on chromosome IV and type-2 21U-RNAs derived from short capped 

small RNAs (csRNAs) that are transcribed bidirectionally at RNA polymerase II 

transcriptional start sites (TSSs) (Gu et al., 2012) (Figure 1.2). Unlike mammalian 

piRNAs, type-1 21U-RNAs do not appear to be processed from long noncoding 

RNA precursors, instead, they derive from ~15,000 individual gene-like loci. 

Upstream (~40bp) from the majority of type-1 piRNAs is an 8nt motif 

‘CTGTTTCA’, referred to as the ‘Ruby motif’ (Ruby et al., 2006; Weick et al., 

2014). This motif is thought to act as a promoter for 21U-RNA transcription, as it 

is required for the biogenesis of 21U-RNAs, and is recognized by forkhead 

transcription factors (Billi et al., 2013; Cecere et al., 2012). However, forkhead 

transcription factors are expressed mostly in somatic cells, indicating that other 

transcriptional activators are also required to transcribe type-1 21U-RNAs 

(Cecere et al., 2012). An A/T-rich spacer sequence is also present between the 

Ruby motif and the 21U-RNA sequence, which is thought to create nucleosome-

free DNA to promote the transcription of the 21U-RNA precursor (Cecere et al., 

2012). 
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21U-RNA precursors are transcribed by RNA Pol II ~40nt downstream of 

the Ruby motif at YRNT (Y=pyrimidine, N=any nucleotide, R=purine) sequences, 

where the thymidine will be the first nucleotide of the 21U-RNA. YR resembles 

the initiator element required for RNA Pol II transcription initiation in mammals, 

plants, and flies (Gu et al., 2012). This produces a capped small RNA with two 

additional 5ʹ′ nucleotides, that is 26-29 nucleotides long (Cecere et al., 2012; Gu 

et al., 2012; Weick et al., 2014). In order to generate the mature 21U-RNA 

loaded on to PRG-1, the cap and 2nt must be removed from the 5ʹ′ termini, and 

3ʹ′-to-5ʹ′ trimming must occur, however, the mechanism and factors involved in 

these steps are unknown. One factor that is required for the maturation of 

precursor to mature 21U-RNA has been identified, PRDE-1, as 26-29nt capped 

precursors accumulate in prde-1 mutants. However, the function of PRDE-1 in 

the biogenesis of these 26-29nt precursors into 21U-RNAs is currently unknown 

(Weick et al., 2014). PRDE-1 is expressed in the nucleus suggesting that the pre-

21U-RNA maturation occurs in the nucleus (Weick et al., 2014) (Figure 1.2). The 

presence of a uracil at position 3 of the precursor 21-RNA, leading to a mature 5ʹ′ 

uridine monophosphate is required for the processing of all 21U-RNAs, 

generating the 5ʹ′ U bias (Billi et al., 2013; Gu et al., 2012) 

The majority of type-1 piRNAs are differentially enriched in either the male 

or female germline, with 56% of type-1 piRNAs preferentially expressed in the 

male germline and 15.8% in the female germline (Billi et al., 2013). This 

correlates with a CTGTTTCA Ruby motif for male enriched piRNAs and an 
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ATGTTTCA Ruby motif for female enriched piRNAs. More definitively, swapping 

of the motifs to a piRNA of the opposite sex disrupts the sex-specific expression 

of 21U-RNAs (Billi et al., 2013). This indicates there could be sex-specific 

Piwi/piRNA functions in C. elegans. 

Type-2 piRNAs are associated with the promoters of protein coding 

genes, as their sequences are oriented divergently, just upstream of 

transcriptional start sites (TSSs), with the sense RNAs often corresponding to the 

major TSS (Gu et al., 2012). They were first discovered as capped small RNAs 

(csRNAs) that are ~26 nt (Gu et al., 2012), reminiscent of csRNAs transcribed by 

paused RNA Pol II or through early termination that have been described in a 

variety of organisms (Haussecker et al., 2008; Nechaev et al., 2010; Seila et al., 

2008). These csRNAs are defined as piRNA precursors because they are 

processed into 21U-RNAs and loaded onto PRG-1. They exist as greater than 

15,000 unique small RNA species, bringing the total number of unique piRNAs in 

C. elegans to greater than 30,000 (Gu et al., 2012). It is not known if type-2 

piRNAs exert any regulatory function on the genes from which they are derived. 

As mentioned above, very few 21U-RNAs have perfectly complementary 

target RNAs expressed in the C. elegans germline, making identifying potential 

targets complicated. However, it has been demonstrated that PRG-1/piRNAs can 

target RNAs with imperfect complementarity of up to four mismatched base pairs 

(Bagijn et al., 2012; Lee et al., 2012). Much like RDE-1/siRNAs and the 

exogenous RNAi pathway this initial targeting recruits RdRPs (EGO-1 and RRF-
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1) to generate secondary (2°) 22G-RNAs with 5ʹ′ guanosine triphosphates that 

are antisense and of perfectly complementarity to the target (Bagijn et al., 2012; 

Lee et al., 2012) (Figure 1.2). These 2° 22G-RNAs are then thought to be loaded 

into WAGO Argonautes, which go on to silence their targets (Figure 1.2 and 

Table 1). This type of silencing is required to regulate transposable elements 

(Bagijn et al., 2012; Batista et al., 2008; Das et al., 2008), analogous to 

Drosophila piRNAs and mammalian pre-pachytene piRNAs. However, 21U-

RNAs and PRG-1 also negatively regulate germline mRNAs through this 

mechanism, the function for this regulation is unknown (Bagijn et al., 2012; Lee 

et al., 2012). 

The WAGO pathway was first identified as a genomic surveillance 

pathway in the C. elegans germline required to silence transposons, 

pseudogenes, cryptic loci (aberrant transcription), and greater than 1,000 coding 

genes (Gu et al., 2009). The machinery required to make these silencing 22G-

RNAs and the association of these RNAs with the WAGO Argonaute WAGO-1 

defined the targets of the pathway. WAGO-1 is localized to P granules, and the 

majority of these small RNAs are maternally inherited, as they are expressed in 

C. elegans oocytes (Gu et al., 2009). How the biogenesis of these small RNAs is 

triggered is a mystery; however, it was discovered that PRG-1 and piRNAs target 

some WAGO target mRNAs recruiting 2° RDRPs to produce a subset of WAGO-

1 22G-RNAs (as described above) (Lee et al., 2012), as prg-1 is required for the 

production of these small RNAs. Interestingly, the targets of this pathway are 
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upregulated in prg-1 and 2° small RNA production/function mutants (Gu et al., 

2009; Lee et al., 2012). Not all WAGO pathway 22G-RNAs are dependent on 

prg-1 and their targets are not downregulated by piRNAs, indicating that there 

are both PRG-1-dependent and PRG-1-independent WAGO genomic 

surveillance pathways (Lee et al., 2012). 

One established function of C. elegans piRNAs and PRG-1 is to initiate an 

epigenetic memory of ‘nonself’ RNAs (foreign sequences) not normally present in 

the germline. When transgenes containing nonself sequences such as green 

fluorescent protein (GFP) are introduced into the genome, even in single copy, 

they are often silenced in the C. elegans germline. Intriguingly, a germline 

silenced GFP transgene confers dominant epigenetic silencing in trans in the F1 

generation when crossed to a strain that expresses a germline GFP transgene 

(Shirayama et al., 2012). Silencing persists in the F2 generation, even after 

crossing out the original silenced germline GFP transgene, and is preserved for 

greater than 30 generations. This phenomenon has been coined RNAe for RNA-

induced epigenetic silencing (Shirayama et al., 2012), and has been 

demonstrated in multiple related transgene-silencing phenomena in the worm 

germline (Ashe et al., 2012; Buckley et al., 2012; Luteijn et al., 2012). This 

phenomenon is reminiscent of a form of epigenetic allelic interaction, also 

involving small RNAs, known as paramutation that has been described in 

organisms ranging from corn to mice (Erhard and Hollick, 2011). 



28

Initiation of RNAe requires PRG-1 and piRNAs, as transgenes containing 

foreign sequences are readily expressed when introduced into prg-1 mutant 

germlines (Shirayama et al., 2012). The machinery to produce 2° 22G-RNAs and 

at least 2 WAGO Argonautes (WAGO-1 and WAGO-9) are required to maintain 

silencing indefinitely, as crossing in one of these mutants into a germline silenced 

GFP transgenes, induces the expression of the transgene, however, piRNAs 

mutants do not, suggesting that they are only involved in initiation of RNAe 

(Bagijn et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012). Downstream 

targeting of the WAGO pathway on silenced transgenes leads to H3K9me 

silencing marks to be deposited on the chromatin associated with the transgene, 

reinforcing the maintenance of silencing. Accordingly, chromatin modifying 

enzymes required for H3K9me and heterochromatin formation are also required 

for the maintenance of silencing (Bagijn et al., 2012; Luteijn et al., 2012; 

Shirayama et al., 2012).  

The endogenous function of these pathways remains an open question in 

the C. elegans small RNA field. Why do PRG-1/piRNAs and the downstream 

WAGO pathways silence endogenous mRNAs, many of which could have 

germline function? Fascinatingly, WAGO Argonautes epigenetically transmit 

these silencing signals transgenerationally through both the sperm and oocyte 

(Conine et al., 2010; Gu et al., 2009). But if these targets are just silenced, why 

do they remain in the genome? It could be a matter of spatial or temporal 

regulation: piRNA targets might be expressed in distinct cells or times in the 
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germline, and the piRNA pathway might silence them where or when they are not 

required. It is a wonder why the pathway does not target more endogenous 

germline mRNAs. If PRG-1 and its greater than 30,000 unique piRNA cofactors 

target mRNAs with up to 4 mismatches, then tens of thousands of mRNAs would 

be targeted, including many essential to germline function. However, the C. 

elegans germline has a solution for this in another endogenous germline small 

RNA pathway: The CSR-1 pathway. 

 

CSR-1: Master regulator of the C. elegans germline 

 CSR-1 (Chromosome Segregation, RNAi defective) is the only essential 

Argonaute in C. elegans (Yigit et al., 2006). csr-1 mutant hermaphrodites are 

completely sterile, sometimes producing a few embryos that display fully 

penetrant embryonic lethality. This sterility is a result of chromosome segregation 

defects, as csr-1 mutant embryos exhibit mitotic chromosomes that fail to 

properly condense and assemble on the metaphase plate, kinetochores that fail 

to orient with the chromosomes and mitotic spindle, and aberrant mitotic divisions 

resulting in anaphase bridging and aneuploidy (Claycomb et al., 2009). In the 

hermaphrodite germline, loss of CSR leads to defects in mitotic proliferation, 

meiotic progression, and chromosome condensation (She et al., 2009). 

Surprisingly, csr-1 males are not fully sterile, but exhibit temperature sensitive 

sterility: at 20°C (permissive temperature) csr-1 males produce half as many 

progeny as a WT male, but at 25°C csr-1 males are completely sterile. This 
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sterility is a result of a spermiogenic defect, similar to prg-1 mutant sperm, and 

miwi mutants in mice (Conine et al., 2013). CSR-1 localizes to P granules and is 

also required to maintain the structure of these germ granules (Claycomb et al., 

2009; Updike and Strome, 2010). 

 CSR-1 interacts with 22G-RNAs complementary to ~6,000 genes 

expressed in both the hermaphrodite and male germline, accounting for the vast 

majority of mRNAs expressed in the germline (Claycomb et al., 2009; Conine et 

al., 2013). With a few exceptions, CSR-1 does not overlap with WAGO 

Argonaute targets, indicating that the CSR-1 and piRNA/WAGO endogenous 

small RNAs represent distinct pathways (Claycomb et al., 2009; Gu et al., 2009). 

The production of these 22G-RNAs requires the RdRP EGO-1, the Dicer-related 

helicase DRH-3, and the Tudor domain protein EKL-1 (Claycomb et al., 2009) 

(Table 1). The triggers or upstream factors that signal the production of these 

small RNAs are unknown, except in the case of the male germline (see below). 

Also, it remains a mystery how the CSR-1 and WAGO 22G-RNAs are correctly 

sorted, even though the CSR-1 and WAGO pathways share the machinery 

required for 22G-RNA biogenesis, and define very different endogenous small 

RNA pathways present in the worm germline. 

Interestingly, unlike canonical small RNA pathways, CSR-1 does not 

silence (downregulate) its targets, as target mRNAs are not overexpressed in 

csr-1 mutants. Conversely, it has been demonstrated in the hermaphrodite 

germline that CSR-1 and 22G-RNAs promote the transcription of their targets, 
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while also preventing antisense transcription and the ectopic transcription of 

silent chromatin domains (Cecere et al., 2014). CSR-1 also promotes the 

transcription of spermiogenic mRNAs (mRNAs required for haploid post-meiotic 

differentiation) in the male germline ((Conine et al., 2013), see below). It is 

unclear how CSR-1 promotes transcription; however, CSR-1 interacts with the 

chromatin of its targets, and also directly interacts with RNA Pol II in an RNA-

dependent manner, indicating that it associates with nascent transcripts (Cecere 

et al., 2014; Conine et al., 2013; Wedeles et al., 2013b).  

It is unclear why csr-1 mutants exhibit chromosome segregation defects 

and if it is related to the misregulation of germline transcription. CSR-1 target 

genes are found in domains dispersed along the chromosomes, comprising 10-

15% of the genome. CSR-1 genomic domains are associated with euchromatic 

histone marks, such as H3K4 methylation (mono-di-tri), H3K36 methylation, 

H3K9 acetylation, and histone H4K8 and K16 acetylation, as well as the histone 

variant H2AZ (HTZ-1), which is enriched at the majority of germline-expressed 

genes (Wedeles et al., 2013a). These domains are inversely correlated with the 

histone variant CENP-A (HCP-3), a histone variant that serves as an epigenetic 

mark for the formation of centromeres, conserved in eukaryotes (Claycomb et al., 

2009; Gassmann et al., 2012). As C. elegans chromosomes are holocentric 

(centromeres are organized across the entire length of the chromosome), with 

each CENP-A domain a site of kinetochore attachment. Intriguingly, in csr-1 

mutants CENP-A localization on the chromosomes is disorganized and the 
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kinetochores fail to properly orient towards the spindles, indicating that the CSR-

1 pathway participates in organizing CENP-A domains used as centromeres 

during mitosis (Claycomb et al., 2009). This could be by promoting the correct 

transcription of the germline as it has been demonstrated that patterns of 

transcription dictate where CENP-A is incorporated, CENP-A being excluded 

from regions where germline transcription occurs (Gassmann et al., 2012). 

Another function of CSR-1 is to protect germline-expressed mRNAs from 

silencing by the piRNA surveillance pathway. Tethering of CSR-1 to the RNA of 

an actively expressed germline GFP transgene prevents piRNA-mediated RNAe 

(Wedeles et al., 2013b). This establishes that CSR-1 can protect RNAs from 

PRG-1 and piRNA initiated silencing. Interestingly, tethering of CSR-1 for several 

generations to a silenced germline GFP transgene or RNAe allele, activates its 

expression, indicating that CSR-1 targeting is not only protective but can also 

activate gene expression over several generations (Wedeles et al., 2013b).  

In a related phenomenon, some actively expressed germline GFP 

transgenes dominantly activate the expression of RNAe silenced germline GFP 

transgenes in trans. This phenomenon requires CSR-1 and was named ‘RNAa’, 

for RNA-induced gene activation (Seth et al., 2013). Strains containing GFP 

transgenes that confer RNAa acquire 22G-RNAs complementary to GFP that 

accumulate in CSR-1, rather than WAGOs, identifying GFP as a ‘self’ RNA 

sequence, thereby protecting it from targeting by PRG-1/21U-RNAs and 

becoming silenced (Seth et al., 2013)(Figure 1.2). These findings suggest a 
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model where CSR-1 interacts with ‘self’ RNAs required for germline function, and 

PRG-1/21U-RNAs scan for ‘nonself’ or foreign sequences. When an RNA is 

targeted by PRG-1/21U-RNA and CSR-1 is not also present, it then recruits 

RdRP to generate silencing 22G-RNAs loaded into WAGOs that 

posttranscriptionally degrade the RNA (Figure 1.2). Nuclear WAGOs such as 

WAGO-9 can also use these silencing 22G-RNAs as guides to target the nascent 

transcripts of nonself RNAs to recruit chromatin modifiers that promote the 

formation of silenced heterochromatin, thereby preventing transcription (Seth et 

al., 2013; Shirayama et al., 2012; Wedeles et al., 2013b) (Figure 1.2). 

Fascinatingly, these Argonautes and small RNAs are present in the gametes of 

both sexes and are transmitted epigenetically from one generation to the next. 

Therefore, CSR-1 transmits a memory of self and WAGOs a memory of nonself, 

providing a highly adaptable, innate, sequence-specific genome-defense 

mechanism in the germline (Seth et al., 2013). However, this model is supported 

only by data from an unnatural transgene system, without answering the question 

of what these pathways’ natural functions are in coordinating the positive and 

negative regulation of nearly all mRNAs expressed in the C. elegans germline. 

The answer, at least in the male germline, comes from another endogenous 

small RNA pathway. 
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Figure 1.2. Endogenous small RNA pathways in the C. elegans hermaphrodite 
germline/oocyte. 
Top, 21U-RNAs (piRNAs) are transcribed by RNA Pol II in the nucleus, Type I from 
21U-RNA genes with upstream promoter elements, and Type II 21U-RNAs from 
bidirectional transcription at TSSs. In the cytoplasm 21U-RNAs bound to PRG-1 scan for 
nonself RNAs, recruiting RdRP to generate 2° 22G-RNAs that are loaded into WAGO 
Argonautes, which can posttranscriptionally or transcriptionally silence their targets. 
Bottom Ieft, CSR-1 and 22G-RNAs target self RNAs protecting from PRG-1/21U-RNA 
initiated silencing. Bottom right, the ERGO-1 embryonic 26G-RNA pathway. Not shown: 
CSR-1 promoting transcription of germline targets in the nucleus. 
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The ERI Endogenous Small RNA Pathway: Sperm and Egg 

 The final major small RNA pathway functioning in the C. elegans 

oocyte/embryo and male germline is the ERI endogenous small RNA pathway. 

Named ERI for Enhanced RNAi, as proteins required for the biogenesis and 

function of this pathway were first identified in genetic screens for mutants that 

exhibited enhanced sensitivity to exogenously triggered RNAi (Kennedy et al., 

2004; Simmer et al., 2002). The ERI-pathway actually consists of two pathways, 

distinguished by developmental expression and the 1° Argonaute that functions 

in the pathway: the ERGO-1 (or embryonic) 26G-RNA pathway and the ALG-3/4 

(or sperm) 26G-RNA pathway (Conine et al., 2010; Han et al., 2009; Pavelec et 

al., 2009; Vasale et al., 2010; Yigit et al., 2006). Many of the proteins required for 

the biogenesis and function of these endogenous pathways are also required for 

exogenous RNAi, most notably Dicer and the WAGOs (Conine et al., 2010; 

Duchaine et al., 2006; Gent et al., 2010; Pavelec et al., 2009; Vasale et al., 2010; 

Welker et al., 2010). The enhancement of RNAi in eri mutants is thought to be a 

result of competition for use of the shared components, in the mutants the 

endogenous pathways are lost, freeing up the machinery for exogenous RNAi 

(Duchaine et al., 2006; Yigit et al., 2006). Interestingly, a majority of eri mutants 

also exhibit a temperature-sensitive (TS), male-sterile phenotype that results 

from a nonfunctional sperm 26G-RNA pathway (see below).  
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 Both pathways are defined by 1° endogenous small RNAs, termed 26G-

RNAs, because they have a bias to begin with a 5ʹ′ guanosine monophosphate, 

and are predominantly 26 nt long (Conine et al., 2010; Han et al., 2009; Ruby et 

al., 2006; Vasale et al., 2010) (Table 1). The embryonic 26G-RNAs begin 

expression in the oocyte, and persists throughout the development of the embryo 

(Han et al., 2009; Vasale et al., 2010). Expression continues in the germline, as 

glp-4(bn2) mutants which lack a germline, exhibit significant depletion of 

embryonic 26G-RNAs (Han et al., 2009). These small RNAs interact with the 

Piwi-clade 1° Argonaute ERGO-1 (Vasale et al., 2010). ERGO-1 is also required 

for the biogenesis of embryonic 26G-RNAs (Han et al., 2009; Vasale et al., 2010) 

(Table 1). Interestingly, ergo-1 mutants exhibit only an eri phenotype, and not TS 

male sterility like other eri mutants, suggesting that ERGO-1 functions exclusively 

in the embryonic pathway (Han et al., 2009; Pavelec et al., 2009; Vasale et al., 

2010). The embryonic/ERGO-1 26G-RNA pathway also functions in the soma, as 

many of the phenotypes induced by enhanced RNAi in eri mutants, are somatic 

defects, particularly in the nervous system, and a subset of these small RNAs 

persists in mutants that lack germline tissue (Gent et al., 2010; Kennedy et al., 

2004; Simmer et al., 2002). Enhanced RNAi is the only obvious phenotype 

displayed by ergo-1 mutants, and therefore, assigning a biological function to the 

pathway has been a challenge (Han et al., 2009; Vasale et al., 2010). This is 

similar to endo-siRNAs in the fly soma and mouse oocyte, which are dispensable 
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for viability and reproduction (Ghildiyal et al., 2008; Kawamura et al., 2008; 

Okamura et al., 2008; Tam et al., 2008; Watanabe et al., 2008). 

 In the oocyte/embryo the RdRP RRF-3 generates antisense 26G-RNAs 

targeting ~50 genes and ~100 unannotated genomic regions that produce likely 

noncoding RNAs (Gent et al., 2010; Han et al., 2009; Vasale et al., 2010) (Figure 

1.2). The 26G-RNAs produced in the embryo are loaded onto ERGO-1 and 

modified by 2ʹ′O-methylation at the 3ʹ′ most nucleotide via the methyltransferase 

HENN-1, providing an interesting correlation with piRNAs, as ERGO-1 is a Piwi-

clade Argonaute (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 

2012) (Table 1). Interestingly, the majority of the genes targeted by the ERGO-1 

26G-RNA pathway have no known function, however, the genomic loci producing 

these target RNAs exhibit a nonrandom distribution in the genome and appear to 

include many genes resulting from genomic duplications, suggesting that this 

pathway may control overexpression from gene expansion (Vasale et al., 2010). 

ERGO-1 using 26G-RNAs as a guide then engage the target RNAs that were 

initially used as a template to produce the 26G-RNA. This targeting then recruits 

a secondary 2° RdRP (RRF-1 or EGO-1) to generate 2° 22G-RNAs that are then 

loaded into WAGO Argonautes (Figure 1.2). These 22G-RNAs have 5ʹ′ 

guanosine triphosphates analogous to other classes of 22G-RNAs (Gent et al., 

2010; Vasale et al., 2010) (Table 1). It should be noted that ERGO-1 contains an 

active catalytic triad required for endonucleolytic cleavage in its Piwi domain, 

allowing it to slice target RNAs (Yigit et al., 2006). Whether ERGO-1 possesses 
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Slicer activity and if it is required for 2° small RNA production is unknown. 

Targeting by the ERGO-1 26G-RNA pathway leads to potent silencing of its 

targets, but the function of silencing is unknown (Gent et al., 2010; Han et al., 

2009; Vasale et al., 2010) (Figure 1.2). 

In the meiotic male germline during spermatogenesis RRF-3 generates 

26G-RNAs targeting ~1400 mRNAs, including the majority of mRNAs expressed 

specifically in the male germline (sperm genes) (Conine et al., 2010; Conine et 

al., 2013; Gent et al., 2009; Han et al., 2009; Pavelec et al., 2009) (Figure 1.3 

and Table 1). Interestingly, these sperm-specific 26G-RNAs do not have any 3ʹ′ 

modification, providing a physical distinction between them and the ERGO-1 

embryonic 26G-RNAs (C.C. Unpublished Data, Billi et al., 2012; Kamminga et al., 

2012; Montgomery et al., 2012). These 26G-RNAs are thought to be loaded into 

the redundant AGO-clade 1° Argonautes ALG-3 and ALG-3/4 (referred to 

collectively as ALG-3/4), as alg-3/4 are required for the biogenesis of sperm-

specific 26G-RNAs (Conine et al., 2010; Han et al., 2009) (Figure 1.3). 

Accordingly, alg-3/4 mutants exhibit a TS male sterility phenotype, and do not 

exhibit an Eri phenotype, as they are not required for the production of ERGO-

1/embryonic 26G-RNAs (Conine et al., 2010; Han et al., 2009).  

Analogous to the ERGO-1/embryonic 26G-RNA pathway, ALG-3/4 using 

26G-RNAs as guides target sperm genes from which the 26G-RNAs were 

derived, to recruit 2° RdRPs (RRF-1 and EGO-1) to generate 2° 22G-RNAs, 

again with a 5ʹ′ guanosine triphosphate (Conine et al., 2010) (Figure 1.3 and 
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Table 1). Like ERGO-1, ALG-3/4 both contain an active catalytic triad required for 

endonucleolytic cleavage in its Piwi domain, allowing it to potential slice target 

RNAs, as in the ERGO-1 pathway, whether slicing occurs and if it’s required for 

2° small RNA production is unknown (Yigit et al., 2006). A subset of ALG-3/4 

26G-RNA target mRNAs are posttranscriptionally silenced downstream of 1° 

targeting by 22G-RNAs and WAGOs. While targeting by ALG-3/4 26G-RNAs to 

another subset of mRNAs generates 22G-RNAs that are loaded into CSR-1, 

which in turn promotes the transcription of the targeted mRNA during 

spermatogenesis, creating a positive feedback to drive expression of the mRNA 

and complementary small RNAs (Conine et al., 2013) (Figure 1.3 and Table 1). 

The proceeding chapters will describe the expression of the Argonautes 

ALG-3/4 and CSR-1 and their small RNA cofactors in the male germline, the 

biogenesis of the small RNAs, and their regulatory affects on their target mRNAs. 

These findings support a model for the ALG-3/4 26G-RNA pathway functioning to 

promote thermotolerant male fertility and to provide a paternally transmitted 

memory of germline gene expression. These findings underlie the capability of 

sperm to transmit an extraordinary amount of epigenetic information via small 

RNAs representing binary silencing and activating signals to successive 

generations. This dissertation provides the first comprehensive overview of small 

RNA pathways in the C. elegans male germline presenting a framework for their 

future studies. 
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Figure 1.3. The ALG-3/4 sperm 26G-RNA pathway. 
The RdRP RRF-3 uses mRNAs expressed during spermatogenesis as templates to create 
26G-RNA which are thought to be loaded into the 1° Argonautes ALG-3/4. ALG-3/4 and 
26G-RNAs then target the original template mRNA to recruit a 2° RdRP to generate 2° 
22G-RNAs loaded into CSR-1. CSR-1 in the nucleus promotes the transcription of these 
targets. Another subset of targets also produces 22G-RNAs downstream of ALG-3/4 and 
26G-RNAs that are loaded into WAGOs leading to the posttranscriptional silencing of 
the targeted mRNA.  

 

 



41

 

 

 

 

 

 
 
Table 1. Small RNA pathways in the C. elegans germline. 
The small RNA pathways are characterized by the physical characteristics of the small 
RNAs, the Argonautes they interact with, expression, function, and whether they elicit a 
secondary small RNA response.  
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CHAPTER II 

 

THE ARGONAUTES ALG-3 AND ALG-4 ARE REQUIRED FOR 

SPERMATOGENESIS-SPECIFIC 26G-RNAS AND THERMOTOLERANT 

SPERM IN C. ELEGANS 
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Summary 

Gametogenesis is a thermosensitive process in numerous metazoans, 

ranging from worms to man. In C. elegans, a variety of RNA-binding proteins that 

associate with germ-line nuage (P granules), including the Piwi-clade Argonaute 

PRG-1, have been implicated in maintaining fertility at elevated temperature. 

Here we describe the role of two AGO-class paralogs, alg-3 (T22B3.2) and alg-4 

(ZK757.3), in promoting thermotolerant male fertility. A rescuing GFP::alg-3 

transgene is localized to P granules beginning at the late pachytene stage of 

male gametogenesis. alg-3/4 double mutants lack a subgroup of small RNAs, the 

26G-RNAs which target and appear to downregulate numerous 

spermatogenesis-expressed mRNAs. These findings add to a growing number of 

AGO pathways required for thermotolerant fertility in C. elegans and support a 

model in which AGOs and their small RNA cofactors function to promote 

robustness in gene-expression networks. 
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INTRODUCTION 

Argonaute (AGO) proteins have been implicated in gene silencing in fungi, 

plants, protozoans, and metazoans including humans. They are ~100-kD highly 

basic proteins that are characterized by the presence of PAZ and PIWI domains 

and by their association with small RNA species (reviewed in (Hutvagner and 

Simard, 2008)). Argonautes can be classified into three clades (Tolia and 

Joshua-Tor, 2007): (i) the AGO clade, which includes the human AGOs1-4, the 

C. elegans miRNA effectors ALG-1/2, and all of the Arabidopsis thaliana AGOs; 

(ii) the Piwi clade, which more closely resembles Drosophila Piwi and includes 

the C. elegans piRNA AGO PRG-1; and (iii) an expanded family of worm-specific 

AGOs (WAGOs) that lack residues in the PIWI domain thought to be necessary 

for slicer endonuclease activity. 

In C. elegans, null mutations are available for the entire family of over 24 

AGO genes (Yigit et al., 2006), and at least 5 different combinations of these 

mutants result in lethal or sterile phenotypes. alg-1/2 mutants display 

heterochronic defects and lethality that arise from loss of miRNA-mediated 

regulation of developmentally-important transcripts (Grishok et al., 2001). csr-1 

mutants have severe chromosome segregations defects that result in embryonic 

lethality (Claycomb et al., 2009; Yigit et al., 2006), and prg-1 mutants have 

severe defects in the development of the germline (Batista et al., 2008; Das et 

al., 2008; Wang and Reinke, 2008). In addition, the simultaneous deletion of 

twelve WAGOs leads to a temperature-sensitive (ts) sterile phenotype, where 
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mutants are viable and fertile at 20°C but sterile at 25°C (Gu et al., 2009). 

Here we describe two paralogous AGO-clade family members, alg-3 and 

alg-4 that are together critical for sperm development and function. While single 

mutants have only a minor reduction in brood size, double alg-3/4 mutants exhibit 

drastically reduced brood sizes at elevated temperatures. We show that a 

rescuing GFP::ALG-3 protein is expressed in germ-cells undergoing 

spermatogenesis, and that, while both male and hermaphrodite alg-3/4 mutants 

produce near wild-type numbers of spermatids, these spermatids exhibit severe 

defects in the activation process called spermiogenesis that converts spermatids 

into motile ameboid sperm.  

A class of 26nt small RNAs called the 26G-RNAs were first identified in 

deep sequencing data sets in C.elegans as part of the previously described 

Dicer-ribonuclease-dependent endogenous small RNA pathway called the ERI 

pathway, and a subset of these were noted to be enriched for spermatogenesis-

expressed mRNA targets (Duchaine et al., 2006; Gent et al., 2009; Pavelec et 

al., 2009; Ruby et al., 2006). Here we show that, like their targets, a subset of 

26G-RNAs are specifically expressed in the male germline and that their 

accumulation depends on the ALG-3/4 AGOs. Our findings suggest that ALG-3/4 

function directly or indirectly in concert with 26G-RNAs and with other 

components of the ERI pathway to negatively regulate the steady-state levels of 

their target transcripts. Together with findings described by Vasale et al. (Vasale 

et al., 2010) our study supports a two-step AGO model in which an initial round of 
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AGO/26G-RNA-mediated targeting triggers the production of secondary small 

RNAs (called 22G-RNAs) that engage a distinct argonaute(s) to amplify the 

silencing signal.  

Our findings add to a growing number of Argonaute-mediated pathways 

that promote robust-thermotolerant fertility in C. elegans. Argonautes acquire 

specificity through their RNA cofactors, and thus in principle have virtually 

unlimited capacity for sequence-specific gene regulation. We propose that AGO 

systems may utilize their versatile and highly adaptable nature to promote 

robustness in gene expression networks. 

 

 

Results 

Mutations in the alg-3/4 AGOs result in male-associated temperature-

sensitive sterility 

The AGO-clade argonautes alg-3 and alg-4 exhibit 96% sequence identity 

at the amino acid level (Figure 2.1), as well as nucleotide homology that extends 

into the 5´ and 3´ noncoding regions. Consistent with the idea that alg-3 and alg-

4 are recently duplicated genes, our genetic tests suggested that they retain 

partially overlapping functions. When compared to wild type, the alg-3(tm1155) 

single mutant exhibited a 2-fold decrease in brood size at 20°C, and a 2.5- fold 

decrease at 25°C (Figure 2.2A). Similarly, alg-3(ok1041) and alg-4 (tm1184) 

displayed a 2-fold decrease in brood size at 20°C, and 3-fold decrease at 25°C 
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(Figure 2.2A). However, when alg-3(tm1155) was combined with alg-4(ok1041) , 

the resulting double mutants exhibited a 3-fold decrease in brood size at 20°C, 

and complete sterility at 25°C (Figure 2.2A). 

To determine whether the sterility of alg-3; alg-4 (alg-3/4) double mutant 

hermaphrodites reflects a general deficit in gametogenesis, or alternatively, is 

specific to either spermatogenesis or oogenesis, we created obligate 

male/female populations. To do this we utilized a fog-2 mutant that results in the 

feminization of hermaphrodites (Schedl and Kimble, 1988). In the following 

crosses, all the individuals are fog-2 mutants, and for simplicity we refer to 

animals with wild-type alg-3 and alg-4 activities as “fog-2 males” or “fog-2 

females” and to alg-3; alg-4 double mutants as “alg-3/4 males” or “alg-3/4 

females”. When mated to either fog-2 females or alg-3/4 females, alg-3/4 males 

sired half as many progeny as fog-2 males at 20°C, and were almost completely 

sterile at 25°C (Figure 2.2B). In contrast, alg-3/4 females were only slightly less 

fertile than fog-2 females when mated to fog-2 males. These data indicate that 

the sterility of alg-3/4 mutants arises primarily from defects specific to the male 

germline. 
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Figure 2.1. Amino acid alignment and gene models for alg-3 and alg-4. 
(A) Alignment of amino acid sequences for alg-3 and alg-4 using clustalW2. (B) Gene 
models for alg-3 and alg-4. Three predicted isoforms of alg-3 are shown.  
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Figure 2.2. alg-3/4 mutants exhibit temperature-sensitive sterility associated with 
the male germline. 
(A-B) Box-and-whiskers plots of brood size in wild-type and mutant strains as indicated 
for (n>20) animals cultured at 20°C (blue) and 25°C (red). In these and all subsequent 
box-and-whisker plots, the top and bottom ends of each box represent the 75th and 25th 
percentile; respectively, the line in the middle represents the median value, and the 
extended lines illustrate the range (highest and lowest value). The temperature of 
cultivation is indicated by color. (A) Self-crosses; (B) crosses between fog-2 (wild-type) 
and alg-3/4;fog-2 (mutant) worms. 
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To determine the temperature-sensitive period (tsp) for alg-3/4-associated 

sterility, hermaphrodites reared at either 20°C or 25°C were shifted to the 

converse temperature (either up to 25°C or down to 20°C) as L2, L3, or L4 larva, 

or as gravid adults (Ward and Miwa, 1978). When shifted up from 20°C to 25°C 

at or prior to the L4 stage, alg-3/4 hermaphrodites were completely sterile (Figure 

2.3) Conversely, fertility was partially restored when alg-3/4 animals were shifted 

down from 25°C to 20°C anytime prior to the L4 stage (Figure 2.3). Fertility could 

not, however, be restored by shifting adults reared at 25°C down to 20°C, 

demonstrating that the temperature-sensitive sterility is at that point irreversible. 

Taken together, these data place the male-fertility defect at the L4 stage, 

coincident with the timing of spermatogenesis. 

 

 

 

Figure 2.3. The temperature sensitive period for alg-3/4 double mutants.  
Worms were hatched at either 20°C or 25° and then shifted to the opposite 
temperature at the indicated larval stage and the brood size was determined. 
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ALG-3 is expressed in the region of the germline undergoing 

spermatogenesis 

To examine the localization of ALG-3, we generated a full-length, N-

terminally tagged GFP::alg-3 transgenic line under the control of the alg-3 

promoter and 3´UTR. This transgenic line rescues alg-3; alg-4 brood size to a 

level near the single alg-4 (ok1041) mutant (Figure 2.2A). In GFP::alg-3 

hermaphrodites and males, GFP expression was observed in the proximal 

germline beginning at the L4 stage (Figure 2.4A & Figure 2.5A), coincident with 

the onset of spermatogenesis. In adult hermaphrodites, after the switch to 

oogenesis, GFP::ALG-3 expression was restricted to the spermatheca. Within 

the spermatheca, in hermaphrodites, and testis in males, GFP::ALG-3 was 

localized within residual bodies, which are enucleate cytoplasts produced by the 

budding off of mature spermatids at the end of meiosis II. Little if any GFP::ALG-

3 could be detected in mature spermatids (Figure 2.4C & Figure 2.5A-C). As 

expected, the proximal expression of GFP::ALG-3 continued through adulthood 

in males (Figure 2.5B). Within the developing spermatocytes GFP::ALG-3 was 

first apparent in the post-pachytene germline prior to the point where 

chromosomes appear to aggregate into a single mass (Figure 2.4A) (Shakes et 

al., 2009). GFP signal was localized throughout the cytoplasm and enriched at 

perinuclear foci coincident with P granules based on colocalization with 

RFP::PGL-1 (Figure 2.4B) (Kawasaki et al., 1998). The developmental 

expression profile of alg-3 mRNA mirrored that of GFP::ALG-3 protein expression 
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and was enriched in male-enriched populations and depleted in female 

populations (Figure 2.5D). 

 

 

 

Fig. 2.4. GFP::ALG-3 is expressed during spermatogenesis. 
(A-C) Micrographs of ALG-3::GFP (green), nuclear staining/DAPI (blue) and PGL-
1::RFP (red). (A) Confocal images in a young adult hermaphrodite. (B) Onset of 
expression in the proximal region of a male gonad. (C) Nomarski and fluorescence 
images of spermatids attached to residual bodies. 
 



54

 

 

 

Figure 2.5. ALG-3 is expressed during spermatogenesis. 
(A-C) Fluorescence microscopy of GFP::ALG-3 in a Wild-type L4 hermaphrodite and in 
Young Adult (YA Male and Hermaphrodite) animals as indicated. (D) Quantitative real 
time PCR analysis of alg-3 mRNA expression using actin mRNA (Blue bars) or 18s 
rRNA (Red bars) as a normalization standard. 
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alg-3/4 double mutants exhibit defects in spermatogenesis and 

spermiogenesis 

To investigate the underlying cause of the alg-3/4 male-germline-

associated sterile phenotype, we examined the development and numbers of alg-

3/4 spermatids in more detail. Relative to fog-2 males, alg-3/4 males produced 

approximately wild-type numbers of spermatids at 20°C, and at 25°C produced 

29% fewer than wild type (Figure 2.6A). This reduction in mature spermatids at 

the nonpermissive temperature was correlated with the persistence of abnormal 

secondary (2°) spermatocytes into adulthood (Figure 2.7). These 2° 

spermatocytes appeared to be arrested as large dinucleate masses or as 

spermatids that fail to bud from the residual body. Chromosome bridging was 

observed in 20% of abnormal secondary spermatocytes in both males and 

hermaphrodites, indicating possible segregation defects during meiosis (Figure 

2.7). Hence, a reduction in the number of spermatids and defects in meiotic cell 

division could contribute to the fully sterile phenotype of alg-3/4 double mutants 

at the non-permissive temperature. However, many apparently normal-

spermatids are produced in alg-3/4 mutants at both the permissive and non-

permissive temperatures. We therefore wondered whether a defect in 

spermiogenesis also existed. During spermiogenesis, activated spermatids form 

spikes that protrude from the cell and subsequently rearrange into a single 

pseudopod (Shakes and Ward, 1989). In vivo, male spermatids are activated 

upon ejaculation, while hermaphrodite spermatids are activated when an oocyte 
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enters the spermetheca (L'Hernault, 2006). In vitro, spermiogenesis can be 

induced by treating isolated spermatids with pronase (Shakes and Ward, 1989). 

Relative to fog-2, 20% fewer alg-3/4 spermatids isolated from males were 

activated by pronase, as indicated by the formation of spike-like structures at 

permissive temperature (Figure 2.6B). Strikingly, only 10% of activated alg-3/4 

spermatids progressed to form pseudopods, compared to 57% of activated wild 

type spermatids. Instead, the alg-3/4 spermatids accumulated many abnormal, 

long spike-like structures and failed to become motile (Figure 2.6C).  At non-

permissive temperature this defect increased, as less than 2% of spermatids 

examined formed pseudopods compared to 54% for WT.    
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Figure 2.6. alg-3/4 mutants exhibit defects in sperm activation. 
(A) Box-and-whisker plots of spermatid counts performed on (n>20) wild-type (fog-2) 
and alg-3/4;fog-2 animals (as indicated) cultured at 20°C (blue) or 25°C (red). (B) 
Graphic depiction of spermatid activation, illustrating the percent of spermatids with 
pseudopods (green), spikes (orange), or unactivated (red) (n>200). (C) DIC images of 
wild-type (fog-2) and alg-3/4;fog-2 spermatids before activation (left panels) and after 
(right panels). Black arrowheads denote pseudopods. 
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Figure 2.7. alg-3/4 mutant defects in spermatogenesis.  
DIC and DAPI images of alg-3/4 developing spermatocytes with defects in DNA 
intergrity and budding from the residual body. 
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A class of sperm-specific 26G-RNAs requires alg-3 and alg-4 

Small RNAs that engage specific AGOs are often depleted in the 

corresponding AGO mutant backgrounds (Batista et al., 2008; Grishok et al., 

2001; Gu et al., 2009). Therefore, we used Illumina deep sequencing to identify 

small RNA species that were depleted in the alg-3/4 mutant background. Small 

RNAs were isolated from male-enriched fog-2 and alg-3/4 populations, as well as 

mature sperm isolated from fem-3 hermaphrodites, which overproduce sperm. To 

ensure that both 5ʹ′ monophosphorylated and 5ʹ′ tri-phosphorylated small RNAs 

would be amenable to ligation, samples were pretreated with tobacco acid 

pyrophosphatase (TAP) prior to cloning (Gu et al., 2009). In both the wild-type 

and alg-3/4 datasets, the majority of small RNAs were found within a large peak 

in the 21-23nt size range corresponding to microRNAs, 21U-RNAs, and 22G-

RNAs (Figure 2.8A) (Batista et al., 2008; Gu et al., 2009; Ruby et al., 2006). 

Strikingly, a second, much smaller peak at 26nt was observed in the wild-type 

dataset but was completely absent in the alg-3/4 dataset (Figure 2.8A). A strong 

bias for guanine at the 5´ residue of the 26 nt RNA species (86% of the 67,206 

reads in wild type) allowed us to identify these small RNAs as 26G-RNAs (Ruby 

et al., 2006). Interestingly, alg-3/4-dependent 26G-RNAs exhibited a strikingly 

lower abundance in mature sperm when compared to the whole male samples. 

Overall, 26G-RNAs were 7-fold less abundant in mature sperm, a finding 

consistent with the expression pattern of GFP::ALG-3 protein, which was 

detected in developing spermatocytes but not in spermatids. 
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Most male-enriched 26G-RNAs were antisense to the expressed regions 

of endogenous C. elegans genes (Figure 2.8B and (Ruby et al., 2006)). 

Altogether, 3191 genes were targeted by 26G-RNAs found in our wild-type 

samples, including 733 genes whose mRNAs were previously identified as 

enriched during spermatogenesis (Reinke et al., 2004). In contrast, only 1093 

genes (279 spermatogenesis-enriched) were targeted by 26G-RNAs in the alg-

3/4 mutant data sets. To create a more stringently defined set of 26G-targeted 

genes, we applied a cutoff that included only genes targeted by at least 10 26G-

RNA reads per million (RPM) total reads. This higher-confidence set included 

400 genes targeted by 26G-RNAs in wild-type, while only 4 genes were targeted 

in alg-3/4 mutants. Among the 400 stringently-defined 26G-RNA targets, 397 

genes (>98%) were at least 2-fold depleted of 26G-RNAs in alg-3/4 mutants 

(Figure 2.8E). The 26G-RNAs that were not dependent on alg-3/4 activity were 

dependent on ergo-1, which encodes an AGO required for a subset of 26G-

RNAs that are abundantly expressed in embryos (Vasale et al., 2010). 

We used microarray analysis of young adult RNA preparations to ask if 

the mRNAs targeted by 26G-RNAs were misregulated in alg-3/4 mutants (Figure 

2.8C). Strikingly, we found that 109 of the 397 most stringently defined targets 

were upregulated by 2 fold or more in the alg-3/4 mutants (Fig. 2.8C, Fig. 2.8E). 

Real-time quantitative RT-PCR (RT-qPCR) analysis of seven alg-3/4 26G-RNA 

targets confirmed the microarray analysis: Five targets that were upregulated in 

the microarrays were also upregulated by RT-qPCR, while two targets that were 
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unchanged in the microarray analysis were also unchanged in the RT-qPCR 

assay (Figure 2.8D). As expected, an ERGO-1-dependent 26G-RNA target was 

not upregulated in alg-3/4 mutants. 

ALG-3/4-dependent 26G-RNAs were not distributed randomly along their 

targets. Instead we noted a marked bias for accumulation at the termini of the 

transcripts (Figure 2.9). Approximately half of the targets exhibited a bias for 5´ 

accumulation of 26G-RNAs, while 34% exhibited a 3´ bias (Figure 2.8E). 

Strikingly, the mRNA levels of genes targeted by 26G-RNAs with a bias for 5´ 

accumulation showed higher levels of upregulation: 85% of the 109 targets 

upregulated in the alg-3/4 mutants based on microarray analysis exhibited a 5´ 

bias for 26G-RNA accumulation. In contrast, only 5.5% of upregulated targets 

exhibited a 3´ bias. The remaining 9.5% exhibited no bias (Fig. 2.8E). 

Finally, we used Northern-blot analysis to examine the expression of 

representative 26G-RNA species. We found that 26G-RNAs targeting f36h12.4 

and ssp-16 were not detectable in alg-3/4 mutants when compared to wild type, 

but were unaltered in ergo-1 mutants (Figure 2.8F). In alg-3(tm1155) and alg-

4(ok1041) single mutants these 26G-RNAs were only partially reduced (Figure 

2.8F). Conversely, a probe designed to detect 26G-RNAs from an ergo-1-

dependent 26G-RNA target (Vasale et al., 2010) c40a11.10, revealed strong 

depletion in the ergo-1 mutants, but showed no change in abundance in alg-3/4 

mutants. Spermatogenesis-expressed 26G-RNAs were also missing in rrf-3 and 

eri-1, supporting the placement of these small RNAs in the ERI pathway.  
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Interestingly, the presence of these 26G-RNAs were only partially reduced in, a 

multiple mutant lacking all 12 WAGO genes (MAGO-12). These findings are 

consistent with the idea that spermatogenesis-specific 26G-RNAs depend on alg-

3 and alg-4 while 26G-RNAs expressed at other stages depend on ergo-1 

(Figure 2.8F, and (Vasale et al., 2010)). 
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Figure 2.8. Analysis of 26G-RNA expression and targeting. 
(A) Length and first-nucleotide distribution of deep-sequencing reads from wild-type 
(fog-2) (left), and alg-3/4; fog-2 (right). (B) Two-point plots comparing the relative 
proportions of various small RNA classes (as indicated by color) in wild-type (fog-2) [left 
point] and alg-3/4; fog-2 mutants [right point]. (C) Box-and-whisker plots depicting 
relative mRNA levels in microarray assays on alg-3/4 (mutant) and N2 (wild-type) 
populations. Here and in figure 2.10B, the Y axis represents the relative proportion of 
reads (measured as[alg-3/4 mutant value divided by (wild-type plus alg-3/4 mutant 
values)] for any given locus). Dotted lines indicate the values corresponding to 2-fold 
enrichment (a value of 0.66) or depletion (a value of 0.33). (D) RT-qPCR measurement 
of target mRNAs upregulated (bold type) or not regulated (regular type) based on 
microarray analysis. k02e2.6 is an ergo-1 dependent 26G-RNA target. (F) Schematic 
representation of 26G-RNA targets defined using a cutoff of 10 reads per million. (G) 
Northern blot analysis of small RNAs in wild-type and various mutant backgrounds as 
indicated. SL1 and mir-66 are loading controls. 
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Figure 2.9. 26G-RNA distribution on targets. 
f59a6.2 exhibits 5′ bias, eft-3 exhibits 3′ bias, and ssp-16 exhibits no bias. Cyan arrows 
represent 1-3 reads, violet 3-10 reads, and red greater than 10 reads. To emphasize this 
bias the number of reads in some cases are labeled. 
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wago-1 and alg-3/4-dependent 22G-RNAs are expressed in mature 

spermatids 

Two recent studies identified distinct 22G-RNA populations that interact 

with the Argonautes WAGO-1 and CSR-1 (Claycomb et al., 2009; Gu et al., 

2009), but did not explore 22G-RNA expression in sperm. We found that 22G-

RNAs represented ~70% of all small RNAs cloned from sperm (Figure 2.10A), a 

proportion comparable to that observed in small RNAs recovered from gravid 

adult samples (Gu et al., 2009). Among the 397 targets that exhibited depletion 

of 26G-RNAs in alg-3/4 mutants, 185 also exhibited a 2-fold or greater depletion 

in 22G-RNAs (Figure 2.10B). In contrast to the expression pattern of 26G-RNAs, 

which were less abundant in mature sperm samples than in male-enriched 

samples, the overall level of 22G-RNAs that target alg-3/4 26G-RNA targets was 

not changed in the sperm sample relative to the male-enriched sample. 

Because WAGO proteins interact with 22G-RNAs (Gu et al., 2009), we 

asked whether WAGOs were present in and required for spermatid function. 

Consistent with this possibility MAGO-12 mutants exhibit a temperature-sensitive 

sterile phenotype (Gu et al., 2009). We found that the sterility of MAGO-12 

hermaphrodites could be partially rescued by mating with wild-type males: 

Crosses with wild-type males at 25°C produced an average brood of 29.8 

progeny, compared to an average brood of 5.7 for self-mated hermaphrodites. 

Further, we found that a GFP::WAGO-1 translational fusion was expressed 

throughout the germline. And unlike GFP::ALG-3 was also present in mature 
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spermatids (Figure 2.10C). 

 

 

 

 

 

Figure 2.10. Analysis of Small RNA pathways in mature sperm. 
(A) Pie chart representing the distribution of different classes of small RNA present in 
isolated spermatids. The 26nt RNAs represent less than 2% of the total small RNA reads. 
(B) alg-3/4 targets are also 22G-RNA targets. The Venn diagram shows intersection 
between regulated alg-3/4 targets (based on microarray) and targets that are depleted 2-
fold or greater of 22G-RNAs. The box-and-whisker diagram shows depletion of 22G-
RNAs relative to wild-type on alg-3/4 targets. (C) GFP::WAGO-1 expression in an adult 
male (upper panel). Spermatids are marked with a white arrowhead. GFP::WAGO-1 
expression in individual spermatids, also stained with DAPI (blue) (lower panel). 
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Discussion 

Argonautes and their associated small RNAs function in gametogenesis in 

all metazoans. The best studied examples are Piwi-clade AGOs, which function 

in the suppression of transposon activity in mammals, insects (reviewed in 

(Aravin et al., 2007)), and nematodes (Batista et al., 2008; Das et al., 2008). 

Here, we have shown that two AGO-class paralogs, alg-3 and alg-4, function 

during male gametogenesis to promote fertility at elevated temperatures 

(thermotolerance). Interestingly, these AGOs are required for a species of 26nt 

RNA called (26G-RNAs) that are anti-sense to hundreds of spermatogensis-

enriched mRNAs (rather than to transposons or repetitive elements). Moreover, 

many of the genes targeted appear to be downregulated in response.   

A subset of 26G-RNAs are expressed during embryogenesis and depend 

on a distinct Argonaute, ERGO-1 (Han et al., 2009; Vasale et al., 2010). Vasale 

et al, propose a model for ERGO-1-dependent 26G-RNAs that involves two 

rounds of RNA templated small RNA production and mRNA targeting. In this two-

step model, ERGO-1 interacts directly with 26G-RNAs produced by the ERI-

complex-associated RNA dependent RNA polymerase (RdRP), RRF-3. The 

resulting ERGO-1/26G-RNAs then recognize mRNA targets. However, rather 

than directly down regulating these targets, the initial targeting recruits a second 

RdRP (RRF-1 and/or EGO-1), which then produces 22G-RNAs that are loaded 

onto WAGO-class Argonautes to mediate silencing (Vasale et al., 2010). Finally, 

whereas ERGO-1 and its associated 26G-RNAs are abundant during 
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embryogenesis, the corresponding 22G-RNAs on the ERGO-1 targets are 

abundant throughout later larval development and into adulthood.   

Several of our findings are consistent with a similar two-step model for 

ALG-3/4-dependent 26G-RNAs (Figure 2.11A). First of all, ALG-3 expression is 

required for and coincides with expression of the spermatogenesis-expressed 

26G-RNAs. Second, as was the case for ERGO-1, ALG-3/4 are also required for 

the expression of 22G-RNAs on their targets. Finally, whereas both ALG-3 and 

26G-RNAs are depleted in mature sperm, WAGO-1 and the ALG-3/4-dependent 

22G-RNAs remain abundant in mature sperm. Taken together these findings 

support a model in which ALG-3/4 are loaded with 26G-RNAs produced by the 

ERI-Dicer-complex during spermatogenesis. These in turn, may induce the 

recruitment of a second RdRP to produce 22G-RNAs that persist as WAGO-1 

complexes in mature sperm. This two step AGO system could function to control 

the levels of mRNAs important for sperm function, perhaps by downregulating in 

mature sperm a set of transcripts expressed during spermatogenesis (Figure 

2.11B).  Persistence of WAGO-1 22G-RNA complexes in mature sperm may also 

provide a mechanism for the inheritance of epigenetic silencing signals important 

for fertility. 
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Figure 6. Model of ALG-3/4 and WAGO-1 expression during sperm development 
(A) Depiction of spermatogenesis and spermiogenesis, with ALG-3/4 and WAGO-1 
expression indicated by the red and green bars (respectively), as well as a model for the 
biogenesis of 26G and 22G RNAs. The schematic in (B) illustrates a potential role for 
ALG-3/4 in lowering target-mRNA levels to increase robustness to temperature. 
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AGOs, temperature sensitive sterility, and P granules 

Wild-type animals exhibit sterility when cultured just 2°C above the 

optimum growth range of 20-25°C, suggesting that one or more aspect of 

gametogenesis involves an inherently temperature-sensitive process. In addition 

to the alg-3; alg-4 mutants and the 12-fold WAGO mutants discussed above, 

mutations in the Piwi-related AGO, prg-1, cause temperature-dependent sterility. 

Mutations in a fourth AGO, csr-1, cause nonconditional sterility and chromosome 

segregation defects. 

Interestingly, ALG-3, WAGO-1, PRG-1 and CSR-1 all localize to germline 

nuage structures called P granules, and csr-1 mutants exhibit dramatic 

mislocalization of the P granules away from the periphery of germ-cell nuclei 

(Batista et al., 2008; Claycomb et al., 2009; Gu et al., 2009). Furthermore, 

mutations in other P granule components that cause defects in the localization of 

the P granules, including pgl-1 and glh-1 (Kawasaki et al., 1998; Kuznicki et al., 

2000), also result in temperature-dependent sterility. P granules appear to dock 

with nuclear pores and are thought to be processing centers for germline 

transcripts (Anderson and Kedersha, 2009). Thus it seems likely that P granules 

function broadly to organize post-transcriptional regulation (and perhaps aspects 

of transcriptional regulation) in the germline, and that at least some of these 

regulatory mechanisms are inherently sensitive to temperature. 
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Adaptation to temperature and small-RNA pathways 

AGO systems appear to have independently evolved genome-scale 

regulatory capacities in diverse organisms. For example, the AGO-mediated 

micro-RNA (miRNA) systems of plants and animals appear to have independent 

evolutionary origins, and yet in both systems miRNAs have acquired hundreds of 

targets, many with subtle affects on gene expression (Bartel, 2004; Bushati and 

Cohen, 2007). The ALG-3/4 system provides another example of an 

independently evolved AGO system that has acquired hundreds of targets. The 

modularity of AGO/small-RNA-mediated targeting permits a single class of AGO 

protein to interact with hundreds or thousands of different small RNA cofactors, 

each of which can in turn regulate the expression of multiple targets. 

Consequently, the expression and sequence of the AGO itself, as well as the 

expression and sequence of each specificity-determining small-RNA, can evolve 

independently. We hypothesize that these features provide AGO systems with 

the capacity to evolve rapidly, giving them the ability to superimpose new 

regulation on existing gene-expression networks. 

The rules that govern the recognition of a transcript and trigger the 

biogenesis of 26G-RNAs are not yet known. The structure or expression of the 

target gene or transcript may promote recognition. Alternatively, all transcripts 

might be sampled stochastically during nuclear export and processing in the P 

granule as discussed above. Whatever the mechanism for initial targeting, the 

presence of 22G-RNAs in mature sperm could drive a feed-forward mechanism 
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that reinforces the recognition and silencing of ALG-3/4 targets in the next 

generation. Thus the ALG-3/4 system may function both broadly and heritably to 

promote robustness to temperature by functioning broadly in the regulation of a 

multitude of targets whose silencing improves the robustness of sperm to 

temperature. 

Gametogenesis appears to be an inherently thermosensitive process both 

in C.elegans and in other metazoans. In most mammals core body temperatures 

are lethal to sperm, and external male gametogenesis appears likely to represent 

an adaptation that was basal to the evolution of endothermy in the vertebrate 

lineage (Werdelin and Nilsonne, 1999). Understanding how the alg-3/4 pathway 

promotes thermotolerant sperm development is likely to uncover general 

principals of gene regulation important for fertility, development and germline 

maintenance in diverse organisms. 
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EXPERIMENTAL PROCEDURES 

Worm strains and genetics 

C. elegans culture and genetics were as described in (Brenner, 1974). 

The Bristol N2 strain was used as the standard wild-type strain. Alleles used, 

listed by chromosome, include: Unmapped: neIs23[unc-119(+) GFP::ALG-3]; 

LGII: neSi1[cb-unc-119(+) GFP::WAGO-1]; LGIII: alg-4(ok1041), alg-4(1184), 

unc-119(ed3); LGIV: alg-3(tm1155), fem-(q20); LGV: fog-2(q71), ergo-1(tm1860).  

Strains: WM200: (alg-3(tm1155); alg-4(ok1041)), WM201: (alg-

3(tm1155); alg-4(ok1041); fog-2(q71)), WM202: (unc-119(ed3); neIs23[unc-

119(+) GFP::ALG-3]; alg-3(tm1155); alg-4(ok1041)), WM203: (unc-119(ed3); 

neIs23[unc-119(+) GFP::ALG-3]; alg-3(tm1155); alg-4(ok1041); fog-2(q71)), 

WM204: (unc-119(ed3); ttTi5605; neSi1[cbunc-119(+) GFP::WAGO-1] II), 

RFP::PGL-1; WM191: MAGO-12 (Gu et al., 2009). 

Transgenic constructs: GFP::ALG-3 as follows: A Not1 site was 

engineered between the ALG-3 promoter and ORF-3ʹ′UTR using PCR, followed 

by Not1 digestion and ligation of the promoter and ORF-3ʹ′UTR, followed by 

cloning into the TOPO TA vector (invitrogen). GFP with Not1 sites on both termini 

was then ligated in between the promoter and ORF after digestion. The 

Gateaway cloning system (invitrogen) was then used to transfer the GFP fusion 

to the pCT045 destination vector. The resulting plasmids were introduced into 

unc-119(ed3) strain using biolistic transformation according to (Praitis et al., 

2001). Transgenic strains were identified and integrated lines were crossed into 
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alg-3/4(tm1155;ok1041) background.  

 

Phenotypic characterization of alg-3/4 mutants 

Brood size analysis was performed as described (Batista et al., 2008). 

Males were enriched from fog-2 or alg-3/4;fog-2 cultures as described (Miller, 

2006). Spermatid activation was performed as described (Shakes and Ward, 

1989). Spermatid numbers were determined by imaging male worms stained with 

DAPI. Microscopy was performed as described (Claycomb et al., 2009). 

Spermatid numbers were determined by imaging male worms stained with 

DAPI. Worms were grown synchronously for 65-70 hrs at 20°C or for 46-51 hrs at 

25°C. Worms were washed off the plate with M9, and then incubated in 70% 

ethanol for 5 minutes, followed by 3 washes with PBS. Samples were then 

incubated with DAPI (5 ug/ml) for 5 minutes, and again washed 3 times with 

PBS. Finally worms were put onto indentation slides, and DAPI-stained 

spermatid nuclei were counted using fluorescence microscopy.  

Gonads and sperm were excised from worms in 1x sperm salts containing 

2mM levamisole and DAPI (5ug/ml) on poly-L-lysine coated slides. Images in 

were acquired using Solamere Technology Group CSU10B Spinning Disk 

Confocal System scan head mounted on a Nikon TE-2000E2 inverted 

microscope with a 40x Plan/APO Oil lens and a Roper Coolsnap HQ2 camera. 

Metamorph, ImageJ, and Adobe Photoshop software were used to analyze the 

images. Z sections ranging from 0.2 to 0.3µm were collected from live worms 



75

immobilized by 2mM levamisole (Sigma). 

 

Molecular Biology 

Enrichment of small RNA and Northern blot analysis were performed as 

described (Gu et al., 2009). Probe sequences (northern blot):  

f36h12.4, tcatgttgccaatgattgcaattttcgtgctacttggatc  

ssp-16, ttattagcattgtattcatacctatcatagaaaacc 

c40a11.10, cggaatctcaaacttttccatcttgc 

SL1, ctcaaacttgggtaattaaacc 

  

Small RNAs extracted from isolated sperm, fog-2 males and alg-3/4;fog-2 

males were pretreated with Tobacco Acid Pyrophosphatase (Epicenter 

Biotechnologies) and cloned using a 5ʹ′ ligation-dependent protocol (Gu et al., 

2009). cDNA libraries were sequenced by the UMass Deep Sequencing Core 

using an Illumina GAII. RT-qPCR was performed as described in (Batista et al., 

2008). Analyses of deep-sequencing and tiling array data were performed as 

described (Gu et al., 2009). 
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CHAPTER III 

 

 

ARGONAUTES PROMOTE TRANSCRIPTION IN THE MALE GERMLINE AND 

PROVIDE A PATERNAL MEMORY OF GERMLINE GENE EXPRESSION IN  

C. ELEGANS
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SUMMARY 

During each life cycle germ cells preserve and pass on both genetic and 

epigenetic information. In C. elegans, the ALG-3/4 Argonaute proteins are 

expressed during male gametogenesis and promote male fertility. Here we show 

that the CSR-1 Argonaute functions with ALG-3/4 to positively regulate target 

genes required for spermiogenesis. Our findings suggest that ALG-3/4 functions 

during spermatogenesis to amplify a small-RNA signal that represents an 

epigenetic memory of male-specific gene expression. CSR-1, which is abundant 

in mature sperm, appears to transmit this memory to offspring. Surprisingly, in 

addition to small RNAs targeting male-specific genes, we show that males also 

harbor an extensive repertoire of CSR-1 small RNAs targeting oogenesis-specific 

mRNAs. Together these findings suggest that C. elegans sperm transmit not only 

the genome but also epigenetic binary signals in the form of Argonaute/small-

RNA complexes that constitute a memory of gene expression in preceding 

generations.
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INTRODUCTION 

The transmission of information independently of the DNA sequence of 

the genome is termed epigenetic inheritance. During sexual reproduction both 

genetic and epigenetic information is passed to the zygote via specialized germ 

cells known as gametes. Gametogenesis involves dynamic molecular and 

morphological changes, culminating in the creation of highly specialized sperm 

and egg cells that package a haploid genome and all of the cellular machinery 

and epigenetic information necessary to launch zygotic development upon 

fertilization. Although many of the pathways required for gametogenesis are 

phylogenetically conserved (Eddy, 2002), especially those that mediate the 

partitioning of genetic information, very little is known about how gametes 

package and transmit epigenetic inheritance. 

Male gametogenesis is an amazing example of cellular differentiation, in 

which undifferentiated male germ cells proceed through meiosis and develop into 

motile spermatozoa. In mammals the process of spermiogenesis, when 

spermatids differentiate into highly polarized motile spermatozoa, is initiated by a 

massive wave of gene expression essential for post-meiotic differentiation 

(Sassone-Corsi, 2002). Shortly thereafter, transcription ceases, and compaction 

of the haploid male genome ensues. Genome compaction within differentiating 

spermatids is facilitated by the replacement in chromatin of histones with small 

basic proteins called protoamines (Wykes and Krawetz, 2003). 
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The culmination of male gametogenesis is a motile gamete capable of 

initiating fertilization and delivering a paternal genome complement to an egg. 

However, genetic material is not the only information packaged in the sperm. 

Epigenetic information is also transmitted in the form of chromatin (DNA and/or 

histone) modifications, and RNA. In humans and mice paternal epigenetic factors 

have been shown to influence metabolism, stress response, and reproduction 

(Rando, 2012). 

In C. elegans a major source of epigenetic inheritance involves 

Argonaute/small RNA pathways. Argonautes are structurally related to 

ribonuclease H and gain sequence specificity via small guide RNAs. Upon 

binding, Argonautes can direct endonucleolytic cleavage of target mRNAs, or can 

recruit cofactors that mediate post-transcriptional or transcriptional silencing 

(Ghildiyal and Zamore, 2009). In C. elegans mutations that perturb Argonaute 

pathways often result in infertility (Batista et al., 2008; Buckley et al., 2012; 

Claycomb et al., 2009; Conine et al., 2010; Gu et al., 2009; Han et al., 2009; 

Pavelec et al., 2009). For example, the Piwi Argonaute prg-1 is required for both 

male and hermaphrodite fertility, and has been linked to transposon and 

transgene silencing (Batista et al., 2008; Ruby et al., 2006). PRG-1 engages over 

30,000 distinct species of genomically-encoded small RNAs, termed Piwi-

interacting (pi) RNAs (Batista et al., 2008; Gu et al., 2012). PRG-1/piRNA 

complexes are thought to utilize imperfect base pairing to scan germline-

expressed mRNAs (Bagijn et al., 2012; Lee et al., 2012). When PRG-1/piRNA 
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complexes bind to foreign RNA sequences, such as those produced by a 

transgene, they initiate the production, via RNA-dependent RNA polymerase 

(RdRP), of amplified small RNAs called 22G-RNAs (Gu et al., 2009). These 22G-

RNAs are in turn loaded onto members of an expanded group of Worm-specific 

Argonaute (WAGO) proteins (Yigit et al., 2006), which silence gene expression 

transcriptionally and post-transcriptionally (Buckley et al., 2012; Gu et al., 2009). 

This form of RNA-induced epigenetic silencing (referred to as RNAe) is then 

stably transmitted via both the sperm and the egg, apparently indefinitely through 

subsequent generations (Shirayama et al., 2012). 

A major question related to the mechanism by which PRG-1 surveys 

germline gene expression is how certain mRNAs are recognized as self and 

protected from silencing. The CSR-1 Argonaute is a candidate factor for 

mediating self-recognition. CSR-1 is related to WAGOs but engages RdRP-

derived small RNAs antisense to most if not all germline-expressed mRNAs. 

Therefore, it is possible that targeting by CSR-1 prevents PRG-1 recognition of 

self mRNA. If this model is correct, then a mechanism must exist during 

gametogenesis to package a cache of CSR-1 22G-RNAs reflecting the state of 

gene expression during each phase of the germline life cycle. 

In this study, we investigate the role of Argonaute small RNA pathways 

during spermatogenesis in C. elegans. Previous work identified ALG-3 and ALG-

4 (ALG-3/4) as redundant AGO-clade Argonautes that promote male fertility 

(Conine et al., 2010; Han et al., 2009). ALG-3/4 engage a class of Dicer and 
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RdRP-dependent small RNAs termed 26G-RNAs that are antisense to mRNAs 

expressed during spermatogenesis (Conine et al., 2010; Han et al., 2009; 

Pavelec et al., 2009). Here we show that sperm transcripts that are targeted by 

ALG-3/4 26G-RNAs are also targeted by CSR-1 22G-RNAs in the male germline. 

We show that alg-3/4 and csr-1 mutant males exhibit identical temperature-

sensitive sterile phenotypes that result from failed spermiogenesis. Both ALG-3/4 

and CSR-1 are required for robust transcription of spermiogenic mRNAs, 

suggesting that ALG-3/4 and CSR-1 function in the same pathway. Consistent 

with this, CSR-1 associates with the chromatin of spermiogenic transcripts and 

localizes to chromatin at the periphery of sperm nuclei in an ALG-3/4–dependent 

manner. 

 ALG-3/4 and 26G-RNAs are absent or greatly reduced in mature sperm 

(Conine et al., 2010). However, we show that CSR-1 and associated 22G-RNAs 

antisense to ALG-3/4 targets are abundant in mature sperm. Surprisingly, sperm 

also contain CSR-1 small RNAs antisense to female-specific germline mRNAs. 

We show that heterozygous offspring of homozygous alg-3/4 or csr-1 males 

exhibit reduced fertility. Moreover, repeatedly backcrossing heterozygous 

hermaphrodites to homozygous mutant males results in a progressive loss of 

fertility (germline-mortal phenotype) that can be rescued by wild-type sperm. 

Taken together, these findings are consistent with a model in which ALG-3/4 and 

CSR-1 and their associated small RNAs provide an epigenetic memory of 
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paternal gene expression, thereby ensuring the trans-generational continuity of a 

robust spermiogenic program. 

 

 

RESULTS 

Ultrastructural characterization of the alg-3/4 mutant spermiogenic defect

Mutations in the Argonautes ALG-3/4 and in other enhanced RNAi (ERI) 

pathway components exhibit a temperature-sensitive sperm-defective phenotype 

(Conine et al., 2010; Han et al., 2009; Pavelec et al., 2009). At 20°C, alg-3/4 

mutant males produce many functional spermatozoa and are able to produce a 

brood size equal to approximately 50% (~150) of wild-type levels. However, at 

25°C they produce haploid spermatids that fail to undergo spermiogenesis, the 

post-meiotic differentiation process where a pseudopod is formed thus creating 

spermatozoa competent for fertilization. At 25°C, alg-3/4 spermatids occasionally 

make aberrant, multibranched ‘spiked’ pseudopods, but normally no activation is 

seen (Conine et al., 2010) which results in arrest as round-spermatids and 

complete male-specific sterility at 25°C. 

To better characterize the spermiogenesis defect of alg-3/4 mutants, we 

used transmission electron microscopy (TEM) to examine alg-3/4 spermatozoa at 

an ultrastructural level (Figure 3.1). Wild-type C. elegans spermatids and 

spermatozoa exhibit several striking features that are visible using TEM. These 

include an electron-dense perinuclear halo containing RNA that encases the 
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nucleus and centrosome of the spermatids and persists through spermiogenesis 

in spermatozoa (Ward et al., 1981), as well as the Fibrous Body-Membraneous 

Organelle complex (FB-MO)(Roberts et al., 1986) (Figure 3.1). The 

morphogenesis of FB-MOs begins in 1° spermatocytes, where large organelles 

derived from the Golgi become associated with fibrous bodies comprised of 

polymerized Major Sperm Protein (MSP), the major structural component of the 

pseudopod (Roberts et al., 1986; Ward and Klass, 1982). In haploid spermatids, 

MOs localize to the plasma membrane while FBs dissolve, releasing 

depolymerized MSP into the cytoplasm. During spermiogenesis or activation of 

the spermatid the MOs fuse with the plasma membrane on one side of the 

spermatid, releasing their contents from the cell for oocyte signalling, while MSP 

protein polymerizes to form the pseudopod on the opposite pole.  

At 20°C many alg-3/4 spermatozoa form WT-looking pseudopods. 

However, MOs fail to become polarized and often fuse with the plasma 

membrane adjacent to the pseudopod rather than with the outer membrane on 

the opposite side of the spermatid (Figure 3.1). At 25°C alg-3/4 spermatids never 

form a WT pseudopod and the RNA halo is frequently absent or appears 

abnormal. In addition, large tubule-like structures are present in the cytoplasm 

(Figure 3.1). These tubules are too large in diameter to be comprised of known 

cytoskeletal components, but instead are thought to be made up of polymerized 

perinuclear halo components (Ward et al., 1981). We also found that FBs fail to 
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disassemble in alg-3/4 mutants at 25°C (Figure 3.1), a phenotype characteristic 

of fer-6 spermatozoa, which also fail to make pseudopods (Ward et al., 1981).  

 

 

 

 

 

Figure 3.1. Ultrastructural analysis of alg-3/4 spermatozoa. 
Transmission electron micrographs of spermatozoa from wild-type (WT, top row) or alg-
3/4 males (bottom row) cultured at 20°C (left) or 25°C (center and right). Examples of 
membranous organelles (black arrowheads) and Fibrous bodies(fb) are indicated. 
Representative nuclei of WT and alg-3/4 spermatozoa are shown at right. Dotted lines 
emphasize the RNA halo surrounding the wild-type nucleus. White arrows label large 
tubule-like structures (visible in cross-section (Ward et al., 1981)) adjacent to alg-3/4 
nuclei.  
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The previously identified fer genes function in the ALG-3/4 pathway  

The fertility phenotypes of alg-3/4 mutant sperm are identical to those of 

temperature-sensitive fertilization-defective (fer) mutants isolated in genetic 

screens more than 30 years ago (Argon and Ward, 1980; Hirsh and Vanderslice, 

1976; Ward et al., 1981). To date, most of the fer genes remain molecularly 

uncharacterized except for fer-1, which encodes a member of the Ferlin family of 

membrane proteins required for the fusion of MOs during spermiogenesis 

(Washington and Ward, 2006). 

The similarity of alg-3/4 and fer mutant phenotypes extends to the ultra-

structural level as assayed by electron microscopy (Figure 3.1). For example, 

alg-3/4 mutants, like the previously characterized fer mutants arrest as round 

non-polarized spermatids in which sperm-specific organelles fail to undergo a 

series of stereotypic fusion events and structural reorganizations that drive 

pseudopod formation. Mutant spermatids also exhibit a missing or abnormal peri-

nuclear RNA halo (Figure 3.1, Ward et al., 1981). 

 Given the striking similarities between the fer and alg-3/4 mutant 

phenotypes, we asked whether the wild-type activities of the fer genes are 

required for the production of ALG-3/4 pathway 26G-RNAs. Northern blot 

analysis of small RNAs isolated from L4/Young adult staged hermaphrodites 

revealed that fer-2, -4, -6, and -15 are required for the production of two 

abundant ALG-3/4 pathway 26G-RNAs targeting the mRNA products of f36h12.4 

and ssp-16 (Figure 3.2A). In the fer-3 mutant, 26G-RNAs targeting f36h12.4 and 
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ssp-6 were significantly reduced or absent, suggesting that fer-3(hc3) may be a 

hypomorphic allele of a gene required for 26G-RNA biogenesis. Neither fer-1 nor 

fer-7 were required for the expression of either f36h12.4 or ssp-6 26G-RNAs 

(Figure 3.2A). Consistent with this finding, fer-1 and fer-7 appear to act later in 

sperm development than alg-3/4 and the remaining fer mutants tested here 

(Argon and Ward, 1980; Conine et al., 2010). Furthermore, fer-1 mutant 

spermatozoa form short-stubby pseudopods with normal looking projections at 

25°C, whereas alg-3/4 and fer-2, -4, -6 and -15 mutant spermatozoa do not 

develop pseudopods at 25°C (Ward et al., 1981).  

We found that fer-3(hc3) and fer-15(b26) exhibit an Eri phenotype (Figure 

3.2B) and, like other Eri mutants, are required for ERGO-1 pathway 26G-RNAs 

targeting the gene c44b11.6 (Figure 3.2A). Indeed, fer-3 and fer-15 mutations 

map nearby the ERI-pathway genes eri-3 and rrf-3, respectively (Roberts and 

Ward, 1982; Ward et al., 1981). fer-3(hc3) failed to complement the Fer and Eri 

phenotypes of eri-3(tm1361) (Figure 3.2B). Consistent with this finding, and the 

partial loss of male-specific 26G-RNAs, we identified a nucleotide substitution in 

exon 3 of eri-3 that is predicted to result in a serine-to-proline missense mutation 

at amino acid 69 (Figure 3.2C). fer-15(b26) failed to complement the Fer and Eri 

phenotypes of rrf-3(pk1426), and we identified a 223 bp deletion that removes 

exon 6 of rrf-3 and is predicted to shift the reading frame and introduce a 

premature termination codon (Figure 3.2C). fer-2, fer-4 and fer-6 mutants were 

not Eri, and their molecular identities remain to be determined. Taken together, 
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our findings indicate that several previously isolated Fer mutants define genes 

that function in the ALG-3/4-26G-RNA pathway. 

 

 

 

 
Figure 3.2. Identification of fer genes as ALG-3/4 pathway components.  
(A) Northern blot analysis of small RNAs from whole male RNA extracts. Radiolabeled 
probes were used for two ALG-3/4 targets, f36h12.4 and ssp-16, and for an ERGO-1–
dependent 26G-RNA target c44b11.6. 22G-RNAs are also visible targeting c44b11.6. 
mir-66 was probed as a loading control. (B) Genetic complementation tests for the 
fertility (Fer) (left panel) and Enhanced RNAi (Eri) phenotypes (right panel) between fer-
3 and eri-3 and fer-15 and rrf-3. Fertility was assayed at 25°C. Enhanced RNAi was 
assayed by unc-73(RNAi) feeding. (C) The exon-intron structures of rrf-3 and eri-3 are 
indicated by the boxes and lines, respectively. The fer-15(b26) allele corresponds to a 
223 nt deletion (red box) that spans intron 6, results in a frame shift and introduces a 
premature termination codon in the rrf-3 coding region The fer-3(hc3) corresponds to a 
missense mutation in eri-3 that changes Serine 69 to Proline. 
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Target regulation by ALG-3/4 and 26G-RNAs 

Our previous deep-sequencing studies identified 397 genes as high-

confidence targets of ALG-3/4–dependent 26G-RNAs using a 10 reads-per-

million (RPM) cut-off (Conine et al., 2010). To identify the full repertoire of ALG-

3/4 targets, we cloned and deep sequenced small RNAs isolated from alg-3/4 

males and WT males cultured at both 20° and 25°C. In total, we identified 1497 

genes targeted by 26G-RNAs in wild-type males at a density of at least 5 RPM. 

We found that 94% (1408) of these genes exhibited a >2-fold reduction in 26G-

RNAs in alg-3/4 mutants and were thus designated as ALG-3/4 target genes. 

The remaining 6% of genes targeted by 26G-RNAs that were unaffected in alg-

3/4 mutants are mostly ERGO-1–dependent 26G-RNA targets (Vasale et al., 

2010). The expanded list of 1408 ALG-3/4 26G-RNA targets accounts for 63% 

(617/970) of genes with sperm-specific expression (Reinke et al., 2004). 

Many ALG-3/4 targets are required for spermiogenesis and are involved in 

pseudopod formation and sperm motility. For example, these targets include 

genes that encode MSPs and MSP-related proteins (Burke and Ward, 1983), as 

well as factors required for sperm motility (Buttery et al., 2003). Because the 

activities of ALG-3/4 and of many of their target genes are required for 

spermiogenesis, it therefore seemed unlikely that ALG-3/4 directs the silencing of 

these targets.  

To determine how ALG-3/4 and 26G-RNAs regulate target mRNAs, we 

performed mRNA deep sequencing (mRNA-seq) of poly-A purified mRNA 
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isolated from WT and alg-3/4 mutant males grown at 20° and 25°C. Comparing 

the relative levels of ALG-3/4 targeted mRNAs between alg-3/4 mutant males 

and wild-type males cultured at 25°C, we found that 214 target mRNAs were 

positively regulated by 2-fold or more (decreased by 2-fold or more in the 

mutant), 204 were negatively regulated by 2-fold or more, and 991 target mRNAs 

did not change (Figure 3.3A). Strikingly, we found that positively-regulated 

mRNAs were much more abundant in WT males than were non-regulated (4-fold 

lower) or negatively-regulated (6-fold lower) mRNAs, when measuring reads per 

million per thousand basepairs (RPMK) from the 25°C mRNA-Seq datasets 

(Figure 3.3B). This enrichment of positively-regulated mRNAs was completely 

dependent on ALG-3/4 activity (was abolished in alg-3/4 mutants, Figure 3.3B). 

To determine whether the changes in male mRNA expression correlate 

with changes in the sperm proteome, we compared the proteomes of alg-3/4 

mutant spermatids and wild-type spermatids purified from males grown at 20°C 

or 25°C. To do this, we used stable isotope labeling by amino acids (Ong et al., 

2002) to label wild-type proteins with the heavy isotope of nitrogen, 15N. 

Unlabeled protein extracted from alg-3/4 or wild-type sperm was combined with a 

known quantity of labeled wild-type sperm protein, and the mixture was analyzed 

by mass spectrometry (Moresco et al., 2010). For each mixture, we obtained a 

ratio of unlabeled peptides (from alg-3/4 or wild-type at 20°C or 25°C) to labeled 

peptides (from wild-type sperm at 20°C) for each protein, which allowed us to 
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measure relative protein levels between alg-3/4 mutant and wild-type sperm, or 

between temperatures.  

Our proteomic analysis revealed 122 proteins that decreased by at least 

1.5 fold in alg-3/4 mutants relative to WT, and 43 that increased (Figure 3.4A). 

For each protein identified in our proteomic analysis, we compared the change in 

protein level in alg-3/4 males at 25°C to the change in mRNA (Figure 3.4E). For 

most ALG-3/4-dependent positively-regulated proteins (81/122, 66%), the 

decrease in protein level in the alg-3/4 mutant could be explained by a reduction 

in the corresponding mRNA. By contrast, for 33% (14/43) of ALG-3/4 negatively-

regulated proteins, we found that the increase in protein could be attributed to 

changes in corresponding mRNAs (3.6B & 3.6E). These data indicate that the 

ALG-3/4 pathway promotes the expression of many of its targets and does so by 

increasing their mRNA levels. 

In alg-3/4 mutants, sperm defects are much more severe at high 

temperature (Conine et al., 2010). We therefore wished to know how ALG-3/4 

target mRNA levels changed with temperature in both the wild-type and alg-3/4 

mutant strains. We found that, in wild-type males positively-regulated mRNAs 

increased at 25°C relative to 20°C, whereas negatively-regulated mRNAs tended 

to decrease at 25°C (Figure 3.3C). The converse was true for alg-3/4 mutant 

males: positively-regulated mRNAs decreased dramatically at 25°C compared to 

20°C, whereas negatively-regulated targets increased, albeit less dramatically 

(Figure 3.3D). Similar analyses of our proteomic data also corroborate these 
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findings (Figure 3.4C-D). The described changes in transcript levels by mRNA-

seq were confirmed using RT-qPCR (Figure 3.5). These data support the 

existence of at least two distinct classes of ALG-3/4 target genes: one that is 

dramatically up-regulated by ALG-3/4 at elevated temperature, and one that is 

moderately down-regulated by ALG-3/4 at elevated temperature. 

ALG-3/4-positively-regulated targets are clearly genes required for 

spermiogenesis and motility, including many of the MSP and MSP-related genes 

involved in pseudopod formation, as well as the PP1 phosphatases encoded by 

gsp-3/4, which are required for multiple aspects of C. elegans sperm 

development and when mutated exhibit temperature-sensitive (TS) sperm 

defects similar to alg-3/4 (Wu et al., 2012). ALG-3/4 negatively-regulated targets 

include genes associated with mitochondrial function (electron transport chain 

and cellular respiration), but a correlation between reproductive genes and 

negatively-regulated ALG-3/4 targets was not observed. 

To confirm that ALG-3/4 promotes the expression of target genes in the 

germline, we used immunofluorescence (IF) assays to detect MSP and GSP-3 

proteins and fluorescence in situ hybridization (FISH) to detect msp transcripts. 

Interestingly, IF of MSP and GSP-3, two positively-regulated targets, suggested 

that these proteins were only slightly reduced in alg-3/4 germlines during 

spermatogenesis and in haploid spermatids at 20°C compared to WT (Figure 

3.6A). At 25°C, however, MSP and GSP-3 were severely reduced throughout the 

spermatogenic germline of alg-3/4 males compared to WT and failed to 
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accumulate in spermatids (Figure 3.6A). Although GSP-3 protein was depleted 

overall, we found that it also accumulated abnormally in the nuclei of alg-3/4 

mutants, particularly at 25°C (Figure 3.6A). In addition, we observed more nuclei 

undergoing chromatin condensation in alg-3/4 males compared to wild-type 

males (see below). Examining spermatids released from the testes of alg-3/4 

mutants raised at 25°C and activated to undergo spermiogenesis in vitro 

revealed that 12% of alg-3/4 spermatozoa accumulate near WT levels of MSP 

and GSP-3. Unlike WT spermatozoa, however, these alg-3/4 spermatozoa never 

formed pseudopods of normal morphology or polarity, with MSP and GSP-3 

localized to the leading edge of the pseudopod (Figure 3.6B). Instead, we 

observed that: 1) MSP and GSP-3 remained in large punctae that resemble 

sperm organelles called Fibrous Bodies (FBs) (5%); 2) MSP localized to the 

cortex and GSP-3 to the cytoplasm of the spermatid but lacked polarity (3%); or 

3) GSP-3 remained in the cytoplasm, and spermatids formed a multibranched, 

spikey pseudopod containing MSP (4%). Consistent with our mRNA-seq and RT-

qPCR data, FISH revealed that msp mRNA was indeed reduced in the 

spermatogenic germline of alg-3/4 males compared to wild-type males (Figure 

3.6C). This reduction was more pronounced at 25°C, with very little signal 

detected in alg-3/4 male germlines, consistent with the temperature-dependent 

regulation of expression (Figure 3.6C). 
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Figure 3.3. ALG-3/4 positively and negatively regulates hundreds of target mRNAs. 
(A) Histogram illustrating the enrichment or depletion of ALG-3/4 target mRNAs in alg-
3/4 mutants relative to WT at 25°C. Dotted lines indicate a two-fold change, values 
approaching 1 indicate enrichment (ALG-3/4 negatively-regulated mRNAs), and values 
approaching 0 indicate depletion (ALG-3/4 positively-regulated mRNAs). In A-D, 
colored bars indicate ALG-3/4 targets positively-regulated (green) or negatively-
regulated (yellow) more than two-fold. Enrichment was calculated as the Reads Per 
Million (RPM) ratio of alg-3/4 / (alg-3/4 + WT). (B) Bar graphs showing the average 
RPM per kilobase (RPMK) for ALG-3/4 regulated targets in WT or alg-3/4 mutant at 
25°C. (C and D) Histogram illustrating the enrichment of positively- or negatively-
regulated ALG-3/4 target mRNAs in WT (C) or alg-3/4 (D) males at 25°C relative to 
20°C. Enrichment was calculated as the RPM ratio of 25°C / (25°C + 20°C). 
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Figure 3.4. Quantitative proteomic analysis of ALG-3/4 target in isolated sperm.  
(A) Histogram illustrating the distribution of ALG-3/4 target protein expression in alg-
3/4 mutant sperm relative to WT sperm at 25°C, calculated by peptide ratio in alg-3/4 
divided by the peptide ratio in alg-3/4 plus the peptide ratio in WT. Dotted lines represent 
either 2-fold enrichment (right, orange) or depletion (left, turquois) in alg-3/4. (B) 
Overlap between the ALG-3/4 positively-regulated proteins with the positively-regulated 
mRNAs. As well as the ALG-3/4 negatively-regulated proteins with the negatively-
regulated mRNAs. (C) Histogram illustrating the distribution of ALG-3/4 target protein 
expression from WT sperm grown at 25°C relative to WT sperm at 20°C, calculated as 
the peptide ratio in WT 25°C divided by peptide ratio in WT 25°C plus the peptide ratio 
in WT 20°C. (D) Histogram illustrating the distribution of ALG-3/4 target protein 
expression in alg-3/4 sperm grown at 25°C relative to alg-3/4 sperm at 20°C. (E) Scatter 
plot comparing the expression of proteins (proteomic analysis) in alg-3/4 sperm relative 
to WT at 25°C (y-axis) to the expression of mRNAs (mRNA-seq) in alg-3/4 males 
relative to WT at 25°C (x-axis). Turquois dots represent ALG-3/4 positively-regulated 
proteins and orange dots represent ALG-3/4 negatively-regulated proteins.   
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Figure 3.5. Target mRNA regulation by ALG-3/4 and CSR-1. 
RT-qPCR analysis of ALG-3/4 targets normalized to gpd-2. Data are represented as mean 
+/- SEM. 
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Figure 3.6. ALG-3/4 positively-regulates genes required for spermiogenesis. 
(A-C) Confocal images of WT and alg-3/4 mutant gonads (A, C) and activated 
spermatocytes (B). Each column of photographs represent a single specimen imaged with 
different fluorescence channels (as indicated). A merged image is shown at the bottom. 
The genotype and temperature at which spermatogenesis occurred are indicated. DNA 
was visualized by DAPI staining (blue). In (A and B) the sperm proteins MSP (green) 
and GSP-3 (red) are visualized by Immunofluorescence. In (B) the percentage of WT and 
alg-3/4 spermatozoa that exhibit the staining pattern shown is indicated. In (C) msp 
mRNA is visualized by fluorescence in situ hybridization (FISH). 
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ALG-3/4 promotes the transcription of target genes 

Our findings suggest that ALG-3/4 positively regulates targets at the level 

of the mRNA. We therefore sought to determine whether ALG-3/4 promotes the 

transcription of positively-regulated targets. Using RNA Polymerase II (Pol II) 

chromatin immunoprecipitation (ChIP) followed by qPCR, we found that Pol II 

occupancy of positively-regulated ALG-3/4 targets decreased 1.5- to 3-fold in alg-

3/4 males compared to wild-type males cultured at 20°C. Notably, Pol II 

occupancy was reduced 3- to 7-fold in alg-3/4 males grown at 25°C (Figure 

3.7A). Consistent with the reduced Pol II occupancy in alg-3/4 males, the pre-

mRNAs of positively-regulated targets were also decreased in alg-3/4 and fer-

15/rrf-3 males by 2- to 4-fold at 20°C and by 4- to 8-fold at 25°C. These findings 

suggest that both the Argonaute (ALG-3/4) and RdRP (FER-15/RRF-3) promote 

the transcription of positively-regulated targets (Figure 3.7B). Pol II occupancy of 

spe-12 and col-122, two control genes expressed in male germline and somatic 

tissues (respectively) but not targeted by ALG-3/4 26G-RNAs, was not 

dependent on alg-3/4 or temperature (Figure 3.7A). 

Curiously, Pol II occupancy of the negatively-regulated gene ssp-16 was 

reduced by 2- and 3-fold in alg-3/4 males at 20° and 25°C, respectively, relative 

to wild-type levels (Figure 3.7A). Pol II occupancy of a second negatively-

regulated target f36h12.4 was unchanged at 20°C and reduced nearly 2-fold at 

25°C compared to wild-type levels (Figure 3.7A). The expression of the f36h12.4 
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pre-mRNA mirrored these findings. Each of the five negatively-regulated targets 

that we examined showed a similar reduction in pre-mRNA at 25°C (Figure 

3.7B). These results, therefore, suggest that negatively-regulated ALG-3/4 

targets are silenced at a post-transcriptional level. 

Because the WAGO 22G-RNA pathway is required for silencing (Gu et al., 

2009), we tested whether the WAGO pathway is required to silence negatively-

regulated ALG-3/4 targets at a post-transcriptional level. Indeed, we found that 

the mRNA levels of several negatively-regulated targets were increased in males 

lacking rde-3 or deleted for all 12 WAGOs (MAGO-12; Figure 3.8). These 

increased levels were similar to those observed in alg-3/4 males (Conine et al., 

2010). Strikingly, the pre-mRNA levels of these negatively-regulated targets 

remained unchanged in rde-3 or MAGO-12 males. Thus as previously 

hypothesized (Conine et al., 2010), ALG-3/4 negatively regulates a subset of its 

targets at a post-transcriptional level via the WAGO pathway. 

To examine the temporal and spatial regulation of transcription in the male 

germline by ALG-3/4, we stained male germlines with an antibody that 

recognizes elongating Pol II (Ahn et al., 2004). In wild-type germlines at 25°C, 

elongating Pol II was detected at the periphery of condensing spermatocyte 

nuclei and in small discrete foci in spermatids (Figure 3.7C). By contrast, in alg-

3/4 germlines at 25°C, elongating Pol II disappeared from spermatocyte nuclei at 

the onset of the condensation process (Figure 3.7C), but was detected later in 

spermatogenesis throughout the nucleus in spermatocytes, not just at the 
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nuclear periphery (Figure 3.7C). We next examined a histone modification 

associated with actively transcribed chromatin (Histone H3 dimethylated on 

Lysine 4, H3K4me2, (Kelly et al., 2002). This analysis revealed H3K4me2 

localization throughout the nucleus in wild-type spermatocytes at 25°C. However, 

H3K4me2 was dramatically reduced in alg-3/4 spermatocytes and was present 

only in small patches of chromatin (Figure 3.7D). 
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Figure 3.7. ALG-3/4 promote transcription and CSR-1 nuclear localization in 
condensing meiotic nuclei. 
(A) qPCR analysis of RNA Pol II ChIP at ALG-3/4 target genes in wild-type (WT) and 
alg-3/4 mutants at 20°C and 25°C, normalized to an intergenic region not occupied by 
pol II. Data are represented as mean +/- SEM. ALG-3/4 negatively-regulated targets are 
labeled in grey. (B) RT-qPCR analysis of ALG-3/4 target pre-mRNAs. Data are 
normalized to the non-target gpd-2 pre-mRNA and represented as mean +/- SEM. (C and 
D) Confocal IF images of dissected WT (left) or alg-3/4 (right) spermatogenic germlines 
at 25°C stained with antibodies against (C) elongating RNA Pol II (red) and CSR-1 
(green), or (D) antibodies against H3K4me2 (green) and Nuclear pore protein (red). 
White arrows denote spermatocyte nuclei lacking pol II staining. DNA was stained with 
DAPI (blue). 
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Figure 3.8. ALG-3/4 negatively-regulated targets are silenced by the WAGO small 
RNA pathway.  
(A) RT-qPCR analysis of ALG-3/4 targets normalized to gpd-2 in WAGO pathway 
mutants. (B) RT-qPCR analysis of ALG-3/4 target pre-mRNAs in WAGO pathway 
mutants. Values are normalized to the non-target gpd-2 pre-mRNA. Data are represented 
as mean +/- SEM. 
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CSR-1 acts in the ALG-3/4 pathway to promote sperm development 

Previous work suggested that the Argonaute CSR-1 and its 22G-RNA 

cofactors target but do not silence germline-expressed genes (Claycomb et al., 

2009), and recent work suggests that CSR-1 promotes germline transgene 

expression (Seth et al., 2013). Homozygous csr-1(tm892) mutant hermaphrodites 

are essentially sterile, but produce a few embryos that die due to chromosome 

segregation defects (Yigit et al., 2006, Claycomb et al., 2009). Although csr-1 

males were sterile at 25°C, we were surprised to find that they were ~50% fertile 

relative to wild-type males at 20°C (Figure 3.9A). This temperature-dependent 

sterility was similar to that observed for alg-3/4. Indeed, like alg-3/4 mutant 

spermatids, csr-1 spermatids failed to complete spermiogenesis at 25°C and 

arrested as either round spermatids or spermatids with non-motile or spiky 

pseudopods (Figure 3.9A). 

Consistent with the possibility that CSR-1 functions in the same pathway 

as ALG-3/4, we found that triple csr-1 alg-3; alg-4 mutant males were completely 

sterile at 25°C with defects in spermiogenesis almost identical to those observed 

in the csr-1 single, and alg-3/4 double mutants respectively (Figure 3.9A; Conine 

et al., 2010). At 20°C csr-1 alg-3; alg-4 males exhibited fertility defects similar to, 

but slightly more severe, than csr-1 or alg-3/4 males (Figure 3.9A). Furthermore, 

csr-1 males grown at 25°C exhibited defects in elongating Pol II and H3K4me2 

localization in the spermatogenic germline that were indistinguishable from 

phenotypes observed in alg-3/4 males at 25°C (Figure 3.10A). Taken together 
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these findings suggest that CSR-1 functions along with ALG-3/4 to promote a 

chromosomal environment compatible with transcription. Perhaps consistent with 

this idea, we observed an increase in the number of spermatocytes undergoing 

nuclear condensation in both alg-3/4 and csr-1 males. The increase was 

moderate at 20°C (1.2- to 1.4-fold), but enhanced at 25°C, with both alg-3/4 and 

csr-1 mutants showing a nearly 2-fold increase in the number of condensing 

nuclei relative to wild-type (Figure 3.10B). These observations suggest that 

spermatocyte nuclei begin to condense prematurely, or fail to complete 

condensation appropriately, in alg-3/4 and csr-1 mutants. 

In the hermaphrodite germline, CSR-1 localizes to perinuclear P-granules 

and to condensed chromatin in oocytes (Claycomb et al., 2009). In addition CSR-

1 was identified in a proteomic study as a protein associated with sperm 

chromatin (Chu et al., 2006). To examine the expression pattern and localization 

of CSR-1 during male gametogenesis, we performed immunofluorescence using 

an antibody that recognizes endogenous CSR-1 (Claycomb et al., 2009). CSR-1 

was associated with P-granules throughout the syncytial male germline and into 

differentiating spermatocytes, where P-granules disperse and disappear. In 

developing gametes, we found that CSR-1 localized to large cytoplasmic foci and 

in discrete chromatin domains of spermatocytes undergoing nuclear 

condensation as well as in haploid spermatids (Figure 3.9B). In alg-3/4 mutants 

cultured at 25°C, CSR-1 was present in large cytoplasmic foci in spermatocytes 

undergoing nuclear condensation but was largely absent from chromatin. 



105

Notably, in haploid spermatids from alg-3/4 males we observed fewer CSR-1 

cytoplasmic and nuclear foci than in haploid spermatids from wild-type males 

(Figure 3.9B). Taken together, these findings suggest that CSR-1 functions with 

ALG-3/4 to promote gene expression in developing spermatocytes. 

 

CSR-1 22G-RNAs target genes also targeted by ALG-3/4 26G-RNAs 

The similarities between the cellular and developmental phenotypes of 

alg-3/4 and csr-1 males are consistent with the possibility that ALG-3/4 and CSR-

1 function in the same small RNA pathway. To determine whether CSR-1 is 

required for the expression of small RNAs antisense to ALG-3/4 targets, we 

cloned and deep sequenced small RNAs from csr-1 males grown at 25°C. 

Remarkably, we found that ALG-3/4-dependent 26G-RNAs – regardless of class, 

i.e., antisense to positively- or negatively-regulated targets – were strongly 

depleted in csr-1 males. Indeed, this depletion was to a level resembling that of 

alg-3/4 mutant males (Figure 3.9C). On the other hand, 22G-RNAs were only 

slightly depleted in alg-3/4 and csr-1 males (Figure 3.9C). A similar minor 

reduction of 22G-RNAs was observed previously when small RNAs were cloned 

from csr-1 hermaphrodites (Claycomb et al., 2009). While these findings are 

consistent with the idea that ALG-3/4 and CSR-1 function in the same pathway, 

they also suggest that the pathway may not be linear (see Discussion). 

To further explore the idea that CSR-1 and ALG-3/4 share targets, we 

cloned and deep sequenced CSR-1–associated 22G-RNAs. To do this we 
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performed CSR-1 Immunoprecipitation (IP) followed by small-RNA deep-

sequencing from male-enriched (>95%) populations expressing a rescuing 

FLAG::CSR-1 transgene and grown at 25°C. We found that CSR-1 IP enriched 

small RNAs targeting 5575 genes, including 90% (3775/4190) of the genes 

previously identified as CSR-1 targets in the hermaphrodite (Claycomb et al., 

2009). As expected, CSR-1 IP did not enrich miRNAs or 21U-RNAs, nor did it 

enrich 22G-RNAs previously identified as WAGO-1-associated in hermaphrodites 

(Claycomb et al., 2009; Gu et al., 2009). We also recovered small RNAs that 

target ~1800 genes not previously identified as CSR-1 targets, including most 

annotated male-germline-expressed genes. Notably, using a 2-fold cutoff, 

FLAG::CSR-1 IP enriched for small RNAs antisense to 82% (1156/1408) of all 

ALG-3/4 targets defined in this study (Figure 3.9D), including 88% (188/214) of 

ALG-3/4 positively-regulated genes, 83% (821/991) of non-regulated genes and 

72% (147/204) of ALG-3/4 negatively-regulated genes (Figure 3.9D). Thus, just 

as CSR-1 is required for all ALG-3/4 26G-RNAs, these findings indicate that 

CSR-1 associates with 22G-RNAs targeting most and perhaps all ALG-3/4 

targets. 

Surprisingly, while analyzing our CSR-1 IP data, we found that the 

FLAG::CSR-1 IP from males enriched small RNAs that target female-specific 

genes (Reinke et al., 2004).  Remarkably, these oogenesis-specific small RNAs 

were present at levels similar to those of small RNAs targeting male-specific 

genes (Figure 3.9D). This finding is striking given that the corresponding female-
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specific mRNAs were at least 13-fold less abundant than male-specific mRNAs in 

our mRNA-seq data (Figure 3.9D). These results suggest that males might inherit 

maternally-derived small RNAs that target female-specific genes and actively 

transmit them to their offspring (see Discussion). 

 

CSR-1 promotes the expression of ALG-3/4 targets 

CSR-1 was previously shown to associate with the chromatin of its 22G-

RNA target genes in hermaphrodites (Claycomb et al., 2009). To ask whether 

CSR-1 associates with the chromatin of genes targeted by ALG-3/4 in males, we 

performed CSR-1 ChIP on WT and alg-3/4 male populations grown at 25°C. We 

found that in WT males CSR-1 ChIP enriched all of the ALG-3/4 targets assayed, 

including both positively and negatively regulated targets, by 1.5- to 3-fold 

relative to a no-antibody control (Figure 3.9E). This enrichment was not detected 

in alg-3/4 mutant animals (Figure 3.9E). CSR-1 ChIP from males also enriched 

several genes that were previously identified as CSR-1 targets in 

hermaphrodites, including daf-21, cgh-1 and oma-1 (Claycomb et al., 2009). The 

latter two, cgh-1 and oma-1, were only weakly expressed in males (Data Not 

Shown) and were not ALG-3/4 targets. As expected, we found that the 

association of CSR-1 with these two loci was independent of ALG-3/4 (Figure 

3.9E). CSR-1 ChIP did not enrich spe-12 or f46f5.5, genes that are not targeted 

by ALG-3/4– or CSR-1–associated small RNAs (Figure 3.9E). Using RT-qPCR 

we found that the mRNA and pre-mRNA levels of positively-regulated ALG-3/4 
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targets were reduced by similar amounts in csr-1 males (see Figure 3.11C 

below). By contrast, we found that mRNA levels of ALG-3/4 negatively-regulated 

targets were unchanged in csr-1 mutant males at 25°C (Figure 3.5), while pre-

mRNA levels decreased (see Figure 3.11C below). This latter finding – that pre-

mRNA levels decrease for ALG-3/4 negatively-regulated targets – was also 

observed, paradoxically, in alg-3/4 mutant males (Figure 3.7B). Taken together 

these findings indicate that targets positively regulated by ALG-3/4 are also 

positively regulated by CSR-1, and suggest that ALG-3/4 and CSR-1 promote the 

expression of their targets at a transcriptional level, including a subset of ALG-3/4 

targets whose net expression is negatively regulated due to post-transcriptional 

silencing. 
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Figure 3.9. CSR-1 associates with both male- and female-specific small RNAs in 
males and positively regulates spermiogenic gene expression. 
(A) (Left) Fertility of WT, csr-1, or csr-1 alg-3; alg-4 males at 20°C or 25°C measured in 
crosses with fog-2 females. Box and whisker plots represent a range of cross progeny 
from at least 15 independent crosses for each genotype. (Right) In vitro activation of 
spermatids isolated from csr-1, csr-1 alg-3; alg-4, or WT males grown at 20°C or 25°C. 
Bar graphs show the percent of spermatids that fail to activate (red), partially activate and 
form spikey projections (orange), or fully activate and form a pseudopod (yellow) 
(n>300). (B) Confocal IF images of primary (1°) spermatocytes (left) or spermatids 
(right) in dissected alg-3/4 or WT germlines stained with antibodies against CSR-1 
(green) and a nuclear pore protein (red). DNA was stained with DAPI (blue). White 
arrows denote chromatin domains where CSR-1 localizes. (C) Box and whisker plots 
indicate depletion of 26G-RNAs and 22G-RNAs antisense to ALG-3/4 targets in alg-3/4 
and csr-1 males at 25°C. Box and whisker plots to the right indicate enrichment of 22G-
RNA and lack of enrichment of 26G-RNAs antisense to ALG-3/4 targets in the CSR-1 
IP. (D) Analysis of mRNA expression and CSR-1 small RNA levels in wild-type males. 
Categories of gene expression are indicated below the bottom graph. ALG-3/4 targets as 
defined in Figure 3.3: positively-regulated (green), negatively-regulated (yellow), and 
unchanged (White). Male-germline specific genes (blue), includes many ALG-3/4 
targets. Female-germline specific genes (red) – not targeted by ALG-3/4. Soma-specific 
mRNAs and 21U-RNAs are control sequences not enriched by CSR-1 IP. The number of 
genes in each category is indicated above the graphs. Top graph: mRNA expression as 
monitored by RNA-Seq in reads per million per kilobase (RPMK). Middle graph: small 
RNA levels in reads per million (RPM) per gene. Bottom graph: box and whisker plot 
indicating the enrichment or depletion in CSR-1 IP of small RNAs antisense to genes. 
Enrichment was calculated as the RPM ratio of FLAG::CSR-1 IP / (FLAG::CSR-1 IP + 
Input). Dotted lines indicate 2-fold enrichment (upper) or depletion (lower). ‘+’ indicates 
the average enrichment value for all genes in the category. (E) qPCR analysis of 
FLAG::CSR-1 ChIP at genes targeted by ALG-3/4, CSR-1, or neither. ALG-3/4 
negatively-regulated targets are indicated in grey text. Data were normalized to 
y47h10a.3, which is not targeted by ALG-3/4 or CSR-1. Data are represented as mean +/- 
SEM. 
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Figure 3.10. ALG-3/4/CSR-1 pathway mutants exhibit defects in spermatogenic 
chromatin condensation and transcription.  
(A) alg-3/4 and csr-1 mutants exhibit similar defects in spermatogenic nuclear 
condensation. Comparison of the number of condensing nuclei present in the meiotic 
germline of WT, alg-3/4 and csr-1 males at 20°C or 25°C. Box and whisker plots indicate 
the range of data from at least twelve DAPI-stained confocal image stacks per strain and 
condition. (B) Confocal IF images of dissected WT (top) or csr-1 (bottom) spermatogenic 
germlines at 25°C stained with antibodies against (left) elongating RNA Pol II (red), 
spermatocyte nuclei completely missing Pol II staining are denoted with a white arrow, or 
(right) antibodies against H3K4me2 (green). DNA was stained with DAPI (blue).   
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CSR-1 and ALG-3/4 provide a paternal memory of past gene expression 

The ALG-3/4 proteins are present during spermatogenesis but are 

eliminated from maturing spermatids (Conine et al., 2010). The CSR-1 protein, 

however, is abundant in mature sperm (Figure 3.9B). We therefore wondered if 

ALG-3/4 and CSR-1 might function together to pass a memory of male-specific 

gene expression from one generation to the next via CSR-1. To test this idea, we 

first analyzed the fertility of alg-3/4 and csr-1 heterozygous hermaphrodites (F1) 

cultured at 25°C. We then mated heterozygous hermaphrodites to homozygous 

alg-3/4 or csr-1 males, respectively, at the permissive temperature to obtain F2 

heterozygous hermaphrodites. In this and subsequent generations, the resulting 

heterozygous offspring were cultured at 25°C to assay their fertility before being 

mated to homozygous males at 20°C (Figure 3.11A). In parallel, as a control, we 

mated heterozygous hermaphrodites to heterozygous males to obtain 

heterozygous offspring (Figure 3.11A). Thus, the maternal genotype was always 

heterozygous throughout this analysis, whereas the paternal genotype was either 

homozygous (experimental series) or heterozygous (control series). Remarkably, 

we found that heterozygous offspring (hermaphrodites or males) derived from 

homozygous alg-3/4 or csr-1 males became progressively less fertile with each 

generation at 25°C (Figure 3.11B). By the sixth generation (F6), the heterozygous 

offspring of alg-3/4 or csr-1 homozygous males were completely sterile. The 

sterility of F6 heterozygous hermaphrodites could be rescued by mating to wild-

type males, indicating that the sterility was due to a sperm defect. In the control 
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series, on the other hand, the heterozygous offspring of heterozygous males 

maintained a consistent level of fertility throughout the course of the experiment. 

Importantly, the impaired fertility of heterozygous alg-3/4 and csr-1 offspring 

correlated with declining pre-mRNA expression levels of ALG-3/4 targets. By the 

F5 generation, relative to either control heterozygous males or wild-type males, 

the heterozygous male offspring of homozygous males exhibited a reduction in 

pre-mRNA similar to alg-3/4 or csr-1 males at 25°C (Figure 3.11C). Thus, ALG-

3/4 and CSR-1 promote a paternal epigenetic memory of ALG-3/4 target gene 

expression. 
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Figure 3.11. ALG-3/4 and CSR-1 provide a paternal memory of germline gene 
expression. 
(A) Schematic of crosses to assay paternal inheritance of gene expression and sperm 
function. ‘m’ indicates either csr-1 or alg-3/4 allele. (B) Repeated mating with alg-3/4 
and csr-1 males induces a progressive dominant germline-mortal phenotype. Box and 
whisker plots indicate the brood sizes of heterozygous hermaphrodite (red/pink) and male 
(blue/aqua) cross progeny of homozygous mutant fathers (red and blue) or control 
heterozygous hermaphrodites and males (pink and aqua, respectively) determined in 
successive generations of mating to homozygous (blue) or heterozygous (aqua) alg-3/4 
(left panel) or csr-1 (right panel) mutant males. Fertility of male cross progeny was 
assayed by mating to fog-2 females. (C) RT-qPCR analysis of pre-mRNA levels in male 
cross progeny (as indicated by color). Data are normalized to gpd-2 pre-mRNA and 
represented as mean +/- SEM. CSR-1 and ALG-3/4 target mRNAs, and a non-target 
mRNA were assayed (as indicated). An ALG-3/4 negatively-regulated target is indicated 
in grey text. 
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DISCUSSION 

A small RNA feed-forward loop transmits a paternal epigenetic memory of 

past gene expression  

During male gametogenesis germ cells proceed through meiosis and 

undergo dramatic changes in cellular morphology to produce haploid spermatids 

containing highly compacted, transcriptionally inert chromatin (Ward et al., 1981). 

The completion of this process and the subsequent transformation of spermatids 

into polarized motile spermatozoa capable of fertilization depends on the proper 

execution of an extensive gene-expression program involving thousands of 

genes. Here, we have shown that the Argonautes ALG-3/4 and CSR-1 are 

required during this process to promote robust spermatogenic gene expression. 

Although ALG-3/4 is absent from mature sperm (Conine et al., 2010), we have 

shown that CSR-1 is abundant in mature sperm. The propagation of strains 

lacking CSR-1 or ALG-3/4 activities in the paternal lineage caused a progressive 

loss of fertility (a germline-mortal phenotype), in which even heterozygous 

descendants, with a wild-type copy of the respective locus, exhibited complete 

sperm-specific sterility when assayed at 25°C. The observed infertility involved 

an arrest as round spermatids with decreased transcription of ALG-3/4 targets, a 

phenotype identical to that observed in alg-3/4 and csr-1 homozygous mutants. 

These findings suggest that ALG-3/4 and CSR-1 are not only required to promote 

spermatogenic gene expression but also act together to transmit an epigenetic 

memory of paternal gene expression via the sperm. 
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How might this work? Paternal CSR-1 22G-RNAs delivered via the sperm 

could enter the zygotic germline (See Model, Figure 3.12). Later, when 

spermatogenesis initiates in hermaphrodites and males, CSR-1 targeting could 

recruit the RdRP-containing ERI complex (Duchaine et al., 2006; Pavelec et al., 

2009) to initiate the production of 26G-RNAs that are loaded onto ALG-3/4. In a 

feed-forward mode, ALG-3/4 could then target cognate transcripts to recruit the 

EGO-1 RdRP complex to re-amplify CSR-1 22G-RNAs (Claycomb et al., 2009; 

Conine et al., 2010; Gu et al., 2009). While the initial biogenesis of ALG-3/4 and 

CSR-1 small RNAs likely requires some template mRNA destruction, the net 

result of this amplification cycle appears to be increased mRNA levels, perhaps 

due to feedback on transcription. During spermatogenesis, CSR-1 and its 22G-

RNA cofactors might promote gene expression by engaging nascent transcripts 

on the chromatin of its target genes. For example, CSR-1 could recruit factors 

that help maintain a transcriptionally active state during spermatogenesis and 

nuclear condensation, ensuring that spermatids obtain the appropriate level of 

gene products required for spermiogenesis. Finally, CSR-1 small-RNA 

complexes could once again become incorporated into mature sperm, thus 

poised to reinitiate the cycle in the next generation (Figure 3.12). 

 

 

 

 



117

 

 

 

 
 
Figure 3.12. Model for ALG-3/4 and CSR-1 function in the male germline.  
ALG-3/4 and CSR-1 and their small RNA cofactors promote the transcription of 
spermiogenic genes and provide a memory of past germline gene expression. Black dots 
in spermatids represent areas of condensed silent chromatin; yellow areas indicate 
transcriptionally-active chromatin.  
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A protective role for piRNAs across phyla 

In many animals, sperm development is inherently temperature sensitive 

(Rockett et al., 2001). The effects of elevated temperature during sperm 

development can also be epigenetically transmitted, causing developmental 

defects in mammalian embryos, including decreased embryonic mass and 

increased mortality (Jannes et al., 1998; Setchell et al., 1988). However, the 

molecular mechanism behind the temperature sensitivity of sperm development 

remains unclear. 

Our findings indicate that the gene expression programs required for 

spermatogenesis in C. elegans are sensitive to temperature. In wild-type males, 

the expression of many spermiogenesis genes was higher at 25°C than at 20°C. 

We have shown that ALG-3/4 and CSR-1 are required to initiate and maintain the 

activation of spermiogenesis genes at elevated temperatures. Failure to maintain 

spermiogenic gene expression in alg-3/4 and csr-1 mutants correlates with 

dramatic defects in spermatid activation and infertility in both mutant strains at 

elevated temperature. Thus, the ALG-3/4 and CSR-1 pathways appear to act as 

enhancers of gene expression that buffer the effects of temperature on sperm 

development. 

In wild-type animals, the process of spermatogenesis accelerates by 

greater than 25% at 25°C relative to 20°C, which in turn demands a similar 

increase in the expression of gene products that support spermiogenesis. Thus, 

increased gene expression is required in a setting where the rapid onset of 
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meiosis and subsequent chromatin condensation would be expected to shut 

down transcription. Our findings suggest that the ALG-3/4 and CSR-1 pathways 

act together to selectively maintain transcriptionally-active chromatin at 

spermiogenesis genes during meiotic nuclear condensation, while packaging 

other regions of the genome not essential for spermiogenesis into 

transcriptionally-inactive chromatin. This would create a burst of transcription of 

spermiogenesis genes near the end of spermatogenesis, as seen in mammals 

(Sassone-Corsi, 2002), when chromatin begins to condense in 1° spermatocytes 

(Shakes et al., 2009). 

Interestingly, mice deficient for the Piwi homolog MIWI display 

spermatogenic arrest at the round spermatid stage (Deng and Lin, 2002), a 

phenotype similar to that of alg-3/4 and csr-1 mutant sperm. MIWI associates 

with pachytene piRNAs, ~29-31 nt small RNAs derived from large piRNA genes 

within non-repetitive genomic regions (Li et al., 2013). Much like ALG-3/4 26G-

RNAs, mouse pachytene piRNAs are expressed specifically in developing 

spermatocytes upon entering the pachytene stage of meiotic prophase I (Girard 

et al., 2006). Intriguingly, MIWI was shown to associate with the translational 

machinery as well as with polysomes during early spermiogenesis, leading to 

speculation that it promotes translation (Lau, 2010). Recent work also suggests 

that MIWI promotes the stabilization of spermiogenic mRNAs (Nishibu et al., 

2012; Vourekas et al., 2012). Interestingly, a protective role for small RNAs and 

Piwi Argonaute proteins was recently identified in the ciliated protozoan 
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Oxytricha, where piRNAs prevent DNA elimination during genome 

rearrangement (Fang et al., 2012). These findings raise a thought-provoking 

possibility that pachytene piRNAs and ALG-3/4/CSR-1 small RNAs provide 

analogous functions, protecting the genome and buffering gene expression in 

protists, nematodes, and mammals. 

 

Whole-genome surveillance by Argonaute/small-RNA pathways 

While ALG-3/4 and CSR-1 function together to promote the expression of 

many genes required for spermiogenesis, ALG-3/4 also functions independently 

of CSR-1 to negatively regulate a subset of its targets via the WAGO genomic 

surveillance silencing pathway. Although CSR-1 22G-RNAs target these same 

mRNAs, CSR-1 is not required for their silencing (Figure 3.5). Indeed, perhaps 

paradoxically, both CSR-1 and ALG-3/4 appear to moderately promote the 

transcription of these ALG-3/4 negatively-regulated targets. These observations 

suggest that in males ALG-3/4 and CSR-1 promote the transcription of some 

targets that are silenced post-transcriptionally via the WAGO/22G-RNA pathway. 

This complexity might reflect distinct positive and negative regulation of the same 

target genes by CSR-1 and WAGO at different times during spermatogenesis. 

However, it is also possible that transcriptional up-regulation of these targets is 

required to ensure that sufficient template RNA is produced to re-amplify WAGO-

22G-RNAs important for post-transcriptional silencing in the next generation. In 

either case, these findings hint at additional complexity. 
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Surprisingly, males also contain abundant CSR-1 22G-RNAs targeting 

female-specific transcripts. We do not know whether these 22G-RNAs are 

maternal CSR-1/22G-RNA complexes that persist in the male, or alternatively, if 

they are generated de novo in males, perhaps using transcripts maternally 

inherited or produced at low levels. Regardless of their origin, this result could 

indicate that sperm transmit a memory of both paternal and grand-maternal gene 

expression. CSR-1 is also abundant in oocytes and it seems likely that it could 

provide similar functions there, delivering epigenetic signals from the mother and 

possibly the grandfather. Given the relatively much smaller volume of sperm, it is 

possible that the ALG-3/4 system exists, in part, to amplify the sperm-specific 

CSR-1 signal, ensuring both the robust expression of sperm genes and the 

transmission of a memory of sperm-specific gene expression to offspring. 

Like CSR-1-dependent small-RNA signals, WAGO-dependent signals are 

also transmitted via both the egg and the sperm (Ashe et al., 2012; Buckley et 

al., 2012; Gu et al., 2009; Shirayama et al., 2012). Our analysis of CSR-1 and a 

previous study of HRDE-1/WAGO-9 (Buckley et al., 2012) suggest that both 

Argonaute pathways promote germline immortality. Interestingly, when either 

small RNA pathway is lost, fertility begins to decline gradually over a few 

generations. These findings suggest that Argonautes act to reinforce and 

maintain parallel transgenerational epigenetic signals that might, for example, be 

chromatin mediated. In the respective Argonaute mutants, loss of the small RNA 

signals may cause a gradual loss, over a period of several generations, of 
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chromatin marks associated with active or silent gene-expression states, 

resulting in the observed gradual onset of germline mortality. 

Recent work on transgenes expressed in the C. elegans germline (Seth et 

al., 2013) has identified a CSR-1–dependent transgenerational activating signal 

(RNAa). This activating signal, which can be transmitted via the sperm, can act 

within a single generation to reverse a persistent mode of epigenetic silencing 

referred to as RNA-induced epigenetic gene silencing (RNAe) (Shirayama et al., 

2012). Interestingly, while de-silencing was observed immediately after exposure 

to RNAa, continuous exposure, over many generations, was necessary to render 

a formerly silent gene capable of durable independent expression (Seth et al., 

2013). The maintenance of RNAe requires members of the WAGO clade of 

Argonautes, as well as repressive heterochromatin factors and histone 

modifications (Ashe et al., 2012; Buckley et al., 2012; Shirayama et al., 2012). 

Perhaps germline mortality occurs gradually, after loss of CSR-1 and ALG-3/4 

activity, as silencing marks spread into and gradually silence genes required for 

spermatogenesis. The findings reported here support the idea that CSR-1 

transmits a protective small-RNA-induced trans-activating signal, and provide 

physiological evidence linking CSR-1 and RNAa more globally to the 

transmission and maintenance of paternal, and possibly maternal epigenetic 

memory. 
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EXPERIMENTAL PROCEDURES 

Worm strains and genetics 

C. elegans culture and genetics were performed as described (Brenner, 

1974). Unless otherwise noted, the “wild-type” (WT) strain in this study is the 

Bristol N2 strain carrying the fog-2(q71) allele. Alleles listed by chromosome: 

LGI: fer-1(hc24), fer-1(b232), fer-6(hc23), fer-7(hc34); LGII: neSi1[cb-unc-119(+) 

3xflag::csr-1], eri-3(tm1361), fer-3(hc3), rrf-3(pk1426), fer-15(b26); LGIII: alg-

4(ok1041), unc-119(ed3), fer-2(hc2); LGIV: alg-3(tm1155), csr-1(tm892), 

DnT1[unc(n754dm) let](IV;V); LGV: fog-2(q71), fer-4(hc4). The 3xflag::csr-1 

transgenic strain was generated by Mos-mediated single-copy insertion 

(Frokjaer-Jensen et al., 2008) and details are provided in Extended Experimental 

Procedures. Analysis of Eri phenotypes, male fertility and spermatid activation. 

 

Eri, fertility and spermatid activation assays. 

Eri phenotypes were assayed by feeding worms with bacteria expressing 

unc-73 dsRNA and scoring the F1 progeny for the Unc-73 phenotype (Duchaine 

et al., 2006; Kennedy et al., 2004). Male fertility was assayed by mating males to 

virgin fog-2 females and determining the number of viable cross progeny as 

described (Batista et al., 2008). Spermatid activation was performed by isolated 

spermatids from males and incubating with 200 µg/ml pronase as described 

(Shakes and Ward, 1989). 
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Molecular Biology 

The flag::csr-1 transgene was generated by Mos-mediated single copy 

insertion (Frokjaer-Jensen et al., 2008). A 7.0 kb SpeI – BstZ171 fragment from 

cosmid F20D12 containing the entire csr-1 gene was inserted into a modified 

version of pCFJ151 (B1496) for insertion into LGII (Frokjaer-Jensen et al., 2008). 

The 3xflag sequence was inserted into a SmaI site created by site-direct 

mutagenesis immediately after the initiation codon in the second exon of the csr-

1 gene. The 3xflag::csr-1 vector was present at 10 ng/ml in the MosSCI injection 

mixture. Expression of FLAG::CSR-1 was confirmed by western blot. The single 

copy 3xflag::csr-1 transgene inserted in LGII fully rescued the csr-1(tm892) null 

mutant. 

Males were enriched to >95% homogeneity by filtering through a 35 

micron mesh filter (Miller, 2006). Worms were homogenized in a stainless steel 

dounce in the presence of TRI Reagent (MRC Inc) for RNA isolation or IP buffer 

(Gu et al., 2009) for IP. RNA was extracted in TRI Reagent (MRC Inc) according 

to the manufacturer’s specifications. The FLAG::CSR-1 IP was performed as 

described (Gu et al., 2009; Shirayama et al., 2012) using M2 FLAG antibody 

(Invitrogen). Small RNA enrichment and northern blots were performed as 

described (Conine et al., 2010). For cloning and deep sequencing, small RNAs 

were pretreated with Tobacco Acid Pyrophosphatase (Epicenter Biotechnologies) 

and ligated to an adenylated 3ʹ′ linker and then to a 5ʹ′ linker containing a 4 nt 

barcode as described (Gu et al., 2009). Illumina adapters were added by PCR. 
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For mRNA sequencing, polyA RNA was purified from total RNA using the 

PolyATtract mRNA Isolation System (Promega); each sample was purified twice. 

The mRNA was fragmented by base hydrolysis at 95°C for 9.5 min in Sodium 

carbonate buffer, and 2ʹ′,3ʹ′-cyclic phosphates were resolved with T4 

Polynucleotide Kinase (NEB). mRNA fragments with an average length of ~200 

nt were purified from an 8% polyacrylamide/8M urea gel, ligated to a 3ʹ′ linker, 

and reverse transcribed (Superscript III, Invitrogen) using a primer targeting the 

3ʹ′ linker and containing reverse complement 5ʹ′ linker sequence with barcodes for 

multiplex sequencing. The cDNA was circularized using Circligase (epicentre).  

Illumina adapters were added by PCR and cDNA libraries were 

sequenced by the UMass Deep Sequencing Core using an Illumina GAII or 

HiSeq. Deep-sequencing data analyses were performed as described (Gu et al., 

2012). RPMK analysis was performed on the mRNA-seq libraries using a custom 

Perl script 

 

Quantitative PCR and Chromatin IP 

Reverse transcription followed by qPCR (RT-qPCR) was performed as 

described (Batista et al., 2008). To measure pre-mRNA, one of the RT-qPCR 

primers was placed within intron sequence. Primer sequences are available upon 

request.  

For Chromatin Immunoprecipitation (ChIP), male worms were enriched to 

>95%, crosslinked in 2% paraformaldehyde for 30 min at 20°C, washed and 
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worm pellets were flash frozen. Worm pellets were resuspended in 4 volumes of 

FA buffer (Cold Spring Harbor Protocols) containing protease inhibitors (Roche) 

and sonicated at medium intensity in a Biorupter (Diogenode) for 50 min (30 

seconds on, 30 seconds off).  Insoluble debris was pelleted by centrifugation at 

13,000 x g for 15 min. For Pol II ChIP, 6µg of mouse monoclonal anti-Pol II RNA 

pol II (8WG16 from Covance) was added to 5 mg of protein lysate and incubated 

for 2 hr at 4°C. For CSR-1 ChIP, 10 µg of anti-CSR-1 antibody (Claycomb et al., 

2009) was added to 10-15 mg of protein lysate and incubated for 2 hr at 4°C. 

Immune complexes were captured with protein A/G agarose beads (Santacruz) 

at 4°C for 2 hr and washed, and proteins were eluted in TE containing 1% SDS 

and 250mM NaCl at 65°C for 15 min in a thermomixer (800-1000 RPM).  As an 

IgG negative control, 6 ug of normal mouse IgG (SantaCruz) was also added to 5 

mg of protein lysate, and processed the same as the experimental samples. 

Crosslinks were reversed by incubating overnight in TE/1% SDS at 65°C, and 

proteins were digested with proteinase K. DNA was extracted with phenol-

chloroform and precipitated with ethanol.  Enrichment of target loci was assayed 

by qPCR relative to the negative control IgG ChIP and a control intergenic 

region.   

 

Fluorescence microscopy 

Male germlines were dissected on poly-lysine slides in PBS, fixed in 

methanol and formaldehyde and washed with PBT (PBS, 0.1% BSA, and 0.1% 
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Triton-X 100). For immunofluorescence, slides were incubated with primary 

antibodies in PBT overnight at 4°C, washed with PBT, and incubated with 

secondary antibody in PBT for 1-2 hrs at room temperature. Slides were washed 

and mounted with Vectashield (Vector) containing 1 µg/ml DAPI. The following 

Primaries antibodies were used in this study: anti-MSP (4A5 from DSHB), anti-

GSP-3 (kind gift from Dr. Diana Chu (Wu et al., 2012)), anti-elongating RNA pol II 

(H5 from Covance), anti-CSR-1(Claycomb et al., 2009), anti-nuclear pore 

(MAB414 from Covance), and anti-H3K4me2 (07-030 Millipore). Secondary 

antibodies were obtained from Jackson Immunoresearch or Molecular Probes. 

For mRNA FISH, slides were hybridized with Stellaris RNA FISH probes 

(Biosearch Technologies) and processed for imaging according to the 

manufacturer’s recommendations for C. elegans samples. 

The number of condensing nuclei in alg-3/4 and csr-1 male germlines was 

determined using DAPI images from immunofluorescence and RNA FISH 

experiments by counting all of the nuclei from pachytene to metaphase of the first 

meiotic division in which chromosomes could not be individually resolved. 

Images were acquired with a Solamere Technology Group CSU10B 

Spinning Disk Confocal System scan head mounted on a Nikon TE-200E2 

inverted microscope with a 60X or 100X Plan/APO Oil lens and a Roper 

Coolsnap HQ2 camera. Images were processed using Metamorph (7.7.4), 

ImageJ (1.47n5), and Adobe Photoshop (CS4) software. Z sections with slices 

ranging from 0.2 to 0.4 µm were collected. 
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Proteomics 

Sperm were isolated from fog-2 males fed with 15N-labeled (or heavy) 

HB101 bacteria for three generations at 20°C and from fog-2 or alg-3/4; fog-2 

males fed with unlabeled HB101 bacteria at 20°C or 25°C. Each sperm sample 

was homogenized and lysates were centrifuged twice at 10,000 x g for 20 

minutes. Proteins were precipitated in trichloroacetic acid (TCA) and washed in 

acetone. Proteins were denatured, reduced and alkylated prior to trypsin 

digestion. The 15N-labeled (or heavy) protein sample served as an internal 

quantification standard by combining with unlabeled (ie. 14N or light) experimental 

sperm protein samples. MuDPIT (Washburn et al., 2001) analyses were 

performed using an Eksigent nano-LC pump and a Thermo LTQ-Orbitrap 

connected to a homemade electrospray stage. Protein identification and 

quantification were performed with Integrated Proteomics Pipeline - IP2 

(Integrated Proteomics Applications, Inc., San Diego, CA.  

http://www.integratedproteomics.com/). Tandem mass spectra were extracted 

from raw files using RawExtract 1.9.9 (McDonald et al., 2004), searched against 

the Wormbase protein database (release WP180) and reversed sequences using 

ProLuCID (Peng et al., 2003; Tao Xu, 2006), and peptide candidates were 

filtered using DTASelect with the parameters –p 1 –y 1 –trypstat –DM 10 –in 

(McDonald et al., 2004; Tabb et al., 2002). Quantification was performed using 

Census (Park et al., 2008). 
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Reagents and Chemicals. Deionized water (18.2 MW, Barnstead, 

Dubuque, IA) was used for all preparations. Buffer A consists of 5% acetonitrile 

0.1% formic acid, buffer B consists of 80% acetonitrile 0.1% formic acid, and 

buffer C consists of 500 mM ammonium acetate and 5% acetonitrile. 

Sample Preparation. 50 ug each of light and heavy proteins were mixed 

and brought to 200 ul with water. Proteins were precipitated with 60 ul TCA 

(Sigma-Aldrich, St. Louis, MO, Product number T-0699) at 4°C O/N. After 30 min 

centrifugation at 18000 x g, protein pellets were washed 2 times with 500 ul ice-

cold acetone. Air-dried pellets were dissolved in 8 M urea/ 100 mM Tris pH 8.5. 

Proteins were reduced with 5 mM Tris(2-carboxyethyl)phosphine hydrochloride 

(Sigma-Aldrich, St. Louis, MO, product C4706) and alkylated with 10 mM 

iodoacetamide (Sigma-Aldrich, St. Louis, MO, product I11490). Proteins were 

digested for 18 hr at 37°C in 2 M urea 100 mM Tris pH 8.5, 1 mM CaCl2 with 2 ug 

trypsin (Promega, Madison, WI, product V5111). Digest was stopped with formic 

acid, 5% final concentration. Debris was removed by centrifugation, 30 min 

18000 x g.  

 

MudPIT Microcolumn. A MudPIT microcolumn (Wolters et al., 2001) was 

prepared by first creating a Kasil frit at one end of an undeactivated 250 mm 

ID/360 mm OD capillary (Agilent Technologies, Inc., Santa Clara, CA). The Kasil 

frit was prepared by briefly dipping a 20 - 30 cm capillary in well-mixed 300 mL 

Kasil 1624 (PQ Corporation, Malvern, PA) and 100 mL formamide, curing at 

100°C for 4 hrs, and cutting the frit to ~2 mm in length.  Strong cation exchange 

particles (SCX Luna, 5 mm dia., 125 Å pores, Phenomenex, Torrance, CA) were 
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packed in-house from particle slurries in methanol 2.5 cm. An additional 2.5 cm 

reversed phase particles (C18 Aqua, 3 mµm dia., 125 Å pores, Phenomenex) 

were then similarly packed into the capillary using the same method as SCX 

loading, to create a biphasic column. An analytical RPLC column was generated 

by pulling a 100 mm ID/360 mm OD capillary (Polymicro Technologies, Inc, 

Phoenix, AZ) to 5 mm ID tip.  Reversed phase particles (Aqua C18, 3 mm dia., 

125 Å pores, Phenomenex, Torrance, CA) were packed directly into the pulled 

column at 800 psi until 12 cm long. The MudPIT microcolumn was connected to 

an analytical column using a zero-dead volume union (Upchurch Scientific (IDEX 

Health & Science), P-720-01, Oak Harbor, WA).   

LC-MS/MS analysis was performed using an Eksigent nano-LC pump and 

a Thermo LTQ-Orbitrap using an in-house built electrospray stage. MudPIT 

experiments were performed where each step corresponds to 0, 10, 20, 30, 40, 

50, 60, 70, and 100% buffer C being run for 4 min at the beginning of each 

gradient of buffer B. The 100% buffer C step was repeated. Electrospray was 

performed directly from the analytical column by applying the ESI voltage at a tee 

(150 mm ID, Upchurch Scientific). Electrospray directly from the LC column was 

done at 2.5 kV with an inlet capillary temperature of 250°C.  Data-dependent 

acquisition of MS/MS spectra with the LTQ -Orbitrap were performed with the 

following settings: MS/MS on the 6 most intense ions per precursor scan, 1 

microscan, charge state 1 reject; dynamic exclusion repeat count, 1, repeat 

duration, 30 second; exclusion list size 500; and exclusion duration, 180 second.  

 

Data Analysis. Protein and peptide identification and protein quantitation 

were done with Integrated Proteomics Pipeline - IP2 (Integrated Proteomics 
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Applications, Inc., San Diego, CA.) Tandem mass spectra were extracted from 

raw files using RawExtract 1.9.9 (McDonald et al., 2004) and were searched 

against Wormbase database (WP180) with reversed sequences using ProLuCID 

(Peng et al., 2003; Tao Xu, 2006). The search space included all fully-tryptic 

peptide candidates. Carbamidomethylation (+57.02146) of cysteine was 

considered as a static modification. Peptide candidates were filtered using 

DTASelect, with these parameters –p 1 –y 1 –trypstat –DM 10 –in (McDonald et 

al., 2004; Tabb et al., 2002).  Quantitation was performed using Census (Park et 

al., 2008). 
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Sperm Development, Temperature, and Small RNAs
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Overview of Research 

In C. elegans the redundant AGO-clade paralogs, T22B3.2 (ALG-3) and 

ZK757.3 (ALG-4) are required for male fertility at elevated temperatures. alg-3/4 

mutants exhibit reduced fertility at 20°C and complete sterility at 25°C. At all 

temperatures alg-3/4 mutants lack a class of endogenous small RNAs, named 

26G-RNAs that target greater than 1400 spermatogenesis-expressed mRNAs. 

alg-3/4 sterility can be rescued by mating with wild type males, suggesting that 

the infertility results from defects specific to the male germline. alg-3/4 sperm 

exhibit a temperature dependent defect in spermiogenesis, which in C. elegans is 

the haploid post-meiotic differentiation of a spermatid (non-motile) into 

spermatozoa capable of motility, through the formation of a pseudopod (Ward et 

al., 1981). A rescuing GFP::ALG-3 transgene is localized in P-granules beginning 

at the late pachytene stage of male gametogenesis, persisting until the haploid 

stage of meiosis. Two other Argonautes, CSR-1 and WAGO-1 are expressed 

throughout the male germline and also abundant in mature sperm. 

26G-RNAs are synthesized using the targeted mRNAs as template, by the 

RNA-dependent RNA polymerase (RdRP) RRF-3 (see Figure 1.4). ALG-3/4 and 

26G-RNAs can then target the mRNA from which the small RNA was generated, 

to recruit a 2° RdRP. This leads to the production of secondary (2°) 22G-RNAs. A 

subset of targets generates 22G-RNAs that are loaded into the essential 

Argonaute CSR-1 (see Figure 1.4). csr-1 mutant males are identical 

phenotypically to alg-3/4 males and like alg-3/4 mutants, exhibit temperature 
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sensitive infertility resulting from defective spemiogenesis.  CSR-1 and 22G-

RNAs associate with the chromatin of target genes, where they promote the 

transcription of this subset of ALG-3/4 26G-RNA target mRNAs, creating a 

positive-feedback loop to drive expression of target mRNAs and additional small 

RNAs.  

 ALG-3/4 and 26G-RNAs are also required for the posttranscriptional 

silencing of a distinct subset of targets in the male germline, that do not appear to 

be required for spermiogenesis. The 22G-RNAs derived from these targets are 

thought to be loaded into silencing 2° Argonautes, as factors required for the 

production of silencing WAGO 2° 22G-RNAs, and the WAGOs themselves are 

required for the silencing of these targets in the male germline (see Figure 1.4). 

alg-3/4 and csr-1 heterozygous males are normally fertile at all 

temperatures. However, heterozygous male progeny produced after 3 to 5 

generations of paternal homozygosity exhibit the same thermo-intolerant sterile 

phenotype observed for homozygous males. CSR-1 is localized to the chromatin 

and cytoplasm of mature sperm, permitting it to transmit small RNAs to the 

zygote during fertilization. These findings are consistent with a role for the ALG-

3/4, CSR-1 pathway in maintaining an epigenetic program for thermotolerant 

spermiogenesis.  

CSR-1 also engages small RNAs antisense to female-specific germline 

mRNAs that are not expressed in males, suggesting that they could be 

maternally inherited. Taken together our findings suggest that the ALG-3/4 CSR-
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1 pathway promotes thermotolerance by preserving robust spermiogenic gene 

expression during meiosis, and that CSR-1 functions epigenetically to transmit a 

memory of both male- and female-specific gene expression to successive 

generations. 

 

Connecting the dots between chapters II and III 

We initially identified 397 ALG-3/4 26G-RNA targets, based on a small 

RNA sequencing data set from males cultured at 20°C, using a stringent >10 

read per million (RPM) cutoff, as described in chapter II. With more extensive 

sequencing of small RNAs from males cultured at both 20°C and 25°C and a less 

stringent >5 RPM cutoff, we identified 1408 ALG-3/4 26G-RNA target RNAs in 

chapter III. The former targets are represented in the latter list, and the latter list 

of targets includes those regulated at 25°C, where the pathway’s function is most 

critical for sperm development and the targets are regulated most intensely.  

The remaining difference between chapters II and III, is that in chapter II I 

describe the pathway as merely a silencing pathway functioning to downregulate 

target mRNAs. Mainly, due to the fact that of the 397 ALG-3/4 26G-RNA targets 

identified in chapter two, 109 were upregulated in alg-3/4 mutants and only 11 

were downregulated, determined by microarray analysis of WT and alg-3/4 

young adult hermaphrodite samples cultured at 20°C. This actually correlates 

well with the mRNA sequencing data of chapter III, where of the 1408 ALG-3/4 

26G-RNA targets, 242 target mRNAs are upregulated and 20 are downregulated 
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in alg-3/4 mutants at 20°C, as well as with the sperm proteomic data at 20°C 

where 74 target proteins are upregulated and 60 are downregulated. The 

remaining differences are probably a result of differing RNA quantitation 

techniques, and in chapter II the microarray analysis was performed on young 

adult hermaphrodites that have ceased sperm production, compared to mRNA-

Seq of males in chapter III. Thus, it appears that at permissive temperature 

(20°C) the ALG-3/4 26G-RNA pathway predominantly functions to silence ALG-

3/4 negatively-regulated targets. At 25°C the pathway predominantly promotes 

the transcription of ALG-3/4 positively-regulated targets, while also silencing the 

negatively-regulated targets. Interestingly, CSR-1 is required to promote the 

transcription of positively-regulated targets, but not to silence negatively-

regulated targets, and csr-1 males are temperature sensitive (TS) male sterile, 

suggesting that the loss of transcription of ALG-3/4 positively-regulated targets 

underlies the spermiogenic defect at 25°C. rde-3 and mago-12 mutants are also 

sterile at 25°C and required for the silencing of ALG-3/4 negatively-regulated 

targets, but the sterility in these mutants is not completely due to defects in the 

male germline (chapter III, Masaki Shirayama personnel communication).  

Of the 397 ALG-3/4 targets identified in chapter II, 205 exhibit a 5´ bias for 

where in the transcript the 26G-RNAs map, and 136 exhibit a 3´ bias. 5´ targeting 

appears to be predictive of silencing at 20°C as 88/205 genes with 5´ targeting 

bias are upregulated in their steady state mRNA levels in alg-3/4 mutants 

(chapter II). This trend for 26G-RNAs targeting the 5´ and 3´ ends of transcripts 
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also exists at 25°C when analyzing the chapter III data, as 653 targets exhibit a 

5´ bias and 503 exhibit a 3´ bias. However, it is not predictive of silencing, as 

48% and 31% negatively-regulated targets, and 46% and 34% of positively-

regulated targets, exhibit 5´ and 3´ small RNA targeting bias, respectively (Figure 

4.1A). Both 5´ and 3´ biased targets are also targets of CSR-1-assoicated 22G-

RNAs in the male germline (Figure 4.1B). It is unclear why ALG-3/4 targets are 

preferentially targeted at the 5´ and 3´ end of their transcripts; although, it could 

be potentially correlated with UTRs. Thus, ribosome occupancy and translation 

may play a role in where RRF-3 (RdRP) can access the transcript to generate 

26G-RNAs. 
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Figure 4.1. 5´ or 3´ biased targeting by ALG-3/4 26G-RNAs is not predictive of the 
regulatory outcome on that target mRNA. 
(A) Box and whisker plot indicating the relative abundance of target mRNA by mRNA-
seq at 25°C. Calculated as the RPM ratio of WT RPM / (alg-3/4 RPM + WT RPM). 
Dotted lines indicate 2-fold increase (upper) or decrease (lower). ‘+’ indicates the 
average enrichment value for all genes in the category. (B) The relative abundance of 
small RNAs antisense to 5´ or 3´ targeting biased genes in the CSR-1 IP. Enrichment was 
calculated as the RPM ratio of FLAG::CSR-1 IP / (FLAG::CSR-1 IP + Input). Dotted 
lines indicate 2-fold enrichment (upper) or depletion (lower). ‘+’ indicates the average 
enrichment value for all genes in the category. 
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To promote transcriptionally or to silence postranscriptionally 

The ALG-3/4 26G-RNA pathway targets can be separated into two distinct 

functional categories: 1) Positively-regulated targets that CSR-1 and 22G-RNAs 

promote the transcription of during spermatogenesis. 2) Negatively-regulated 

targets that require the WAGO machinery downstream of ALG-3/4 26G-RNAs for 

posttranscriptional silencing. Interestingly, the majority of ALG-3/4-positively 

regulated targets appear to be required for spermiogenesis, sperm motility, and 

fertilization. These ‘spermiogenic’ targets include many of the MSP (Major Sperm 

Protein) genes that are the main structural proteins composing the pseudopod. 

As well as, all four of the related MSD (Major Sperm Domain) genes required in 

the nematode Ascaris suum for depolymerization of MSP fibers as well as genes 

encoding cytosolic motility proteins (CMP) which in the nematode Ascaris suum 

complex with MSP to promote polymerization and motility (Buttery et al., 2003). 

Also included in the ALG-3/4 positively regulated targets are regulators of 

microtubule dynamics, and several SSP genes that encode for proteins similar to 

MSP. All appear to be intimately involved in pseudopod formation. The positively-

regulated targets also include the PP1 phosphatases gsp-3/4, which in C. 

elegans have TS sterility phenotypes similar to alg-3/4 and are also thought to 

regulate MSP dynamics (Wu et al., 2012). Genes that function during fertilization 

are also represented in ALG-3/4 positively regulated targets, including many of 

the components of the proteasome, which has been shown to be required for 

fertilization in mammals (Sakai et al., 2004), and lectins which function in sperm-
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oocyte binding events (Clark, 2013). A similar correlation with reproductive genes 

and the ALG-3/4 negatively regulated targets is not present. However, these 

genes do include many factors associated with the electron transport chain and 

ribosomal protein genes. 

For the positively-regulated targets, ALG-3/4 uses 26G-RNAs as guides to 

target sperm genes, resulting in the recruitment of 2° RdRPs (RRF-1 and EGO-1) 

to generate 2° 22G-RNAs, with a 5´ guanosine triphosphate (Conine et al., 

2010). These 2° 22G-RNAs are loaded into CSR-1, as CSR-1 associates with 

the small RNAs derived from ALG-3/4 targets in the male germline (Conine et al., 

2013). Downstream of ALG-3/4 and 26G-RNA targeting, CSR-1 uses 2° 22G-

RNAs to enter the nucleus and associate with the chromatin of ALG-3/4 target 

genes, probably via the nascent transcript produced by RNA Pol II (Cecere et al., 

2014; Conine et al., 2013; Gu et al., 2009; Wedeles et al., 2013b). A major 

question remaining in not only the male germline but also the hermaphrodite 

germline is; how does CSR-1 promote transcription? During spermatogenesis in 

most organisms, including C. elegans, the chromatin of developing sperm 

undergoes increased condensation, culminating in a transcriptionally inert 

haploid spermatid (Shakes et al., 2009; Ward et al., 1981; Wykes and Krawetz, 

2003).  In mammals and other organisms, the process of spermatogeneic 

chromatin condensation is facilitated by the replacement of histones with small 

basic proteins called protoamines (Wykes and Krawetz, 2003). It is unclear if a 

similar replacement occurs in C. elegans; however, similar small basic proteins 
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have been identified in the sperm chromatin proteome of worms (Chu et al., 

2006).  

One hypothesis for the function of ALG-3/4 and CSR-1 promoting 

transcription is that it prevents the condensation of chromatin around genes that 

are required for spermiogenesis, as these genes are required postmeiotically (as 

condensation is progressing) to function upon the conclusion of meiosis, whereas 

other loci undergo condensation and silencing (Conine et al., 2013). CSR-1 

associated with the chromatin of ALG-3/4 targets may define these domains, by 

recruiting chromatin modifiers, or histone variants that prevent the formation of 

transcriptionally inert chromatin. Supporting this model, sperm genes and ALG-

3/4 26G-RNA targets are nonrandomly distributed in the C. elegans genome, 

located in several large clusters on two of the autosomes (C.C. unpublished data, 

(Miller et al., 2004)).  

CSR-1 promoting the transcription of ALG-3/4 positively-regulated targets 

creates a positive-feedback loop, as increased transcription generates more 

template for RRF-3 to make 26G-RNAs loaded in ALG-3/4, and for ALG-3/4 and 

26G-RNAs to recruit 2° RdRPs to generate 2° 22G-RNAs loaded into CSR-1, 

increasing transcription (Conine et al., 2013). Initiated after the onset of 

spermatogenesis, this positive-feedback would sufficiently drive the transcription, 

in a short period of time, of large amounts of spermiogenic mRNAs required for 

successful postmeiotic differentiation to produce a spermatozoa competent for 

fertilization. 
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ALG-3/4 and 26G-RNAs are also required for the posttranscriptional 

silencing of a separate subset of targets in the male germline, which do not 

appear to be required for spermiogenesis (Conine et al., 2013). Factors required 

for the production of silencing WAGO 2° 22G-RNAs, and the WAGOs 

themselves are also required for the silencing of these targets in the male 

germline, suggesting that ALG-3/4 and 26G-RNA 1° targeting also produce 2° 

22G-RNAs that are loaded into WAGOs (Conine et al., 2013).  

Recently, I performed WAGO-1 and WAGO-9 Immunoprecipitation (IP) 

experiments from males grown at 25°C, using FLAG-tagged (wago-1 or wago-9) 

fog-2 (obligate male/female) strains, and sequenced the associated small RNAs. 

The canonical member of the WAGO pathway, WAGO-1, is localized to the P 

granules and cytoplasm throughout the male germline, and is thought to 

posttranscriptionally silence target mRNAs (Conine et al., 2010; Gu et al., 2009). 

WAGO-1 was previously shown to interact with 22G-RNAs that target greater 

than a thousand genes in the adult hermaphrodite germline (Gu et al., 2009). 

WAGO-9 is localized throughout the hermaphrodite germline in the nucleus, 

where in association with 22G-RNAs it directs epigenetically inherited 

transcriptional silencing of exogenous RNAi or RNAe (Ashe et al., 2012; Buckley 

et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012) WAGO-9’s localization in 

the male germline is unknown, but it is known to be associated with the 

chromatin of sperm (Chu et al., 2006). Prior to this experiment, the endogenous 

targets of WAGO-9 in either the hermaphrodite or male germline were unknown. 



143

Surprisingly, 22G-RNAs targeting ALG-3/4 negatively-regulated targets are not 

enriched in either the WAGO-1 or WAGO-9 IP (Figure 4.2A). Only 3 and 24 ALG-

3/4 negatively regulated targets are greater than 2-fold enriched in the WAGO-1 

and WAGO-9 IP, respectively. These data indicate that other WAGO Argonautes 

are required for the posttranscriptional silencing of these targets. Using male 

mRNA-seq from chapter III, and enrichment in the male CSR-1 IP (an indicator of 

germline expression) to identify WAGOs expressed at the appropriate time and 

place, we identified potential ALG-3/4 26G-RNA pathway downstream silencing 

WAGOs in the male germline, including: wago-3 (ppw-2), wago-4, wago-6 (sago-

2), wago-7 (ppw-1), and wago-10 (Figure 4.2B).  

It is unclear whether ALG-3/4 negatively-regulated targets are silenced 

spatially or temporally by ALG-3/4 in the male germline, or if these targets are 

ubiquitously silenced, raising the question of their function/presence in the C. 

elegans genome. Like the endogenous PRG-1/21U-RNA and WAGO targets, 

ALG-3/4 negatively-regulated targets could be spatially or temporally regulated. 

At some location or developmental point, they may be required for germline 

function, while at others they may not be required or detrimental, hence their 

silencing. To test this, I have attempted to localize two negatively-regulated 

target transcripts, ssp-16 and f36h12.4, using RNA fluorescence in situ 

hybridization (RNA-FISH) in the male germline, as in chapter III. I was unable to 

detect a significant signal, probably because these RNAs are expressed at a 

relatively low level.  
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Figure 4.2. WAGO Argonautes in the male germline. 
(A) Box and whisker plot indicating the relative abundance of 22G-RNAs antisense to 
ALG-3/4 targets in the WAGO-1 or WAGO-9 male IP. Enrichment was calculated as the 
RPM ratio of FLAG::WAGO/ (FLAG::WAGO + Input). Dotted lines indicate 2-fold 
enrichment (upper) or depletion (lower). ‘+’ indicates the average enrichment value for 
all genes in the category. (B) Top, mRNA expression of WAGOs by RNA-Seq of 25°C 
males samples in reads per million per kilobase (RPMK). Bottom, enrichment or 
depletion of small RNAs in the CSR-1 male IP targeting WAGOs, relative to the input. 
Enrichment in the CSR-1 IP is a readout for male germline gene expression.  
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Other small RNAs in the male germline 

CSR-1 and its associated 22G-RNAs were originally shown to target 4190 

genes in adult hermaphrodites (Claycomb et al., 2009). By pulling down CSR-1 

and sequencing the associated small RNAs in the male germline I determined 

that CSR-1 22G-RNAs target 5574 genes, including 90% (3775/4190) of the 

hermaphrodite targets. This experiment revealed an additional 1799 CSR-1 

targets that were previously unknown, many expressed specifically in the male 

germline or sperm. The majority of these genes are downstream of the 1408 

ALG-3/4 26G-RNA targets, as 82% (1156/1408) are also CSR-1 targets (Figure 

4.3).  

 The WAGO genomic surveillance pathway was originally shown to target 

2743 genes. Like CSR-1, this initial analysis was also performed on data 

obtained only from adult hermaphrodite samples (Gu et al., 2009), thus raising 

the question of how many additional WAGO targets are in the male germline? 

From the WAGO-1 (cytoplasmic) and WAGO-9 (nuclear) IP/small RNA-seq 

(above) from males grown at 25°C, WAGOs/22G-RNAs target 3284 genes, 

including 1099 of the hermaphrodite WAGO target genes, revealing an additional 

2185 targets in the male. WAGO-1 and WAGO-9 target 2134 and 1587 genes 

respectively, with only 737 shared (Figure 4.3). This suggests that WAGO-1 and 

WAGO-9 may have distinct regulatory functions, beyond their redundancies, as 

they have many unique targets.  
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To determine PRG-1/21U-RNA dependent and independent targets I also 

performed IP/small RNA-seq of WAGO-1 and WAGO-9 from prg-1 mutant males 

grown at 25°C, using FLAG-tagged prg-1; fog-2 strains, and sequenced the small 

RNAs associated. Of the 3284 WAGO targets, 2128 are dependent on prg-1 for 

their accumulation, with the remaining 1156 being independent of the piRNA 

pathway. Nearly half (554/1132) of the PRG-1-independent WAGO targets are 

also CSR-1 targets in the male germline. Conversely, only 23% (495/2128) of the 

PRG-1/21U-RNA-dependent WAGO-1 male targets overlap with CSR-1 male 

targets (Figure 4.3). These data support the notion that the male target genes are 

in functionally distinct pathways, and provide a connection between CSR-1 and 

PRG-1 independent WAGO pathways. 

Together these findings provide a comprehensive list of genes targeted by 

the CSR-1 22G-RNA, ALG-3/4 26G-RNA pathway, and PRG1/21U-RNA 

dependent and independent 22G-RNA pathways, in the male germline. These 

pathways account for between 94-98% of all genes targeted by all small RNAs 

with greater than 5 RPM in the male germline, depending on the WT small data 

set analyzed, fog-2 males 20°C, fog-2 males 25°C, or N2 males 25°C. Of the 

7515 genes that produce greater than 10 RPMK (reads per million per thousand 

nucleotides) from the 25°C mRNA-seq dataset described in chapter III, 62% are 

targeted by one of the pathways defined here. This percentage would certainly 

increase by subtracting genes expressed only in the soma; however, a 

comprehensive list produced from mRNA-seq data of male somatic mRNAs is 
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not currently available. Regardless, it is clear that Argonautes and small RNAs 

target the majority of male mRNAs to function as master regulators of germline 

gene expression in C. elegans.  

 

Figure 4.3. Genes targeted by endogenous small RNA pathways in the male 
germline. 
(A) Venn diagram illustrating the overlap between the CSR-1, ALG-3/4, PRG-1 
dependent WAGO, and PRG-1 independent WAGO endogenous small RNA pathways in 
the male germline. Created using http://bioinfogp.cnb.csic.es/tools/venny/index.html. 
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The FER/ERI mutants and their male germline defects 

At 20°C (permissive temperature) alg-3/4 males produce ~50% of the 

progeny a WT male produces, while at 25°C they are completely sterile (Conine 

et al., 2010; Han et al., 2009). At 25°C alg-3/4 male germlines exhibit some 

meiotic defects, and produce 29% less sperm than a WT male, however, this 

does not explain the fully penetrant sterility at increased temperatures. Complete 

male sterility at 25°C can be explained by a defect in spermiogenesis. At 20°C 

alg-3/4 mutants produce a fraction of normal looking spermatozoa, while the 

majority have deformed pseudopods resembling spike-like structures that are the 

intermediates of pseudopod development (Ward et al., 1981). At 25°C, greater 

than 95% of alg-3/4 spermatids arrest and never undergo any cellular 

morphogenesis indicative of spermiogenesis.  

Several of the fer mutants (fer-2,3,6,&15), for fertilization defective, that 

were isolated over 30 years ago in genetic screens for TS sperm-defective 

mutants (Argon and Ward, 1980; Hirsh and Vanderslice, 1976), are also 

defective in the ALG-3/4 26G-RNAs, as the small RNAs are depleted in these 

mutants. Interestingly, these mutants exhibit almost identical phenotypes to alg-

3/4 mutants, as identified by ultrastructural examination of mutant sperm by 

transmission electron microscopy (Conine et al., 2013; Ward et al., 1981). Both 

the fer and alg-3/4 phenotype include the disappearance of the RNA halo, which 

appears to encase the nucleus of C. elegans sperm. The function of this 

structure is currently mysterious. Previously, the genetic lesions associated with 
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these mutants were unknown, however, after determining that fer-3 and fer-15 

were required for sperm 26G-RNA biogenesis, they were successfully mapped to 

genes required for the biogenesis of 26G-RNAs, eri-3 and the RdRP rrf-3, 

respectively. 

Other eri mutants, eri-1, eri-3, and eri-4 (an allele of Dicer), also 

demonstrate similar spermiogenic phenotypes, as well as more subtle meiotic 

defects, and X-chromosome segregation defects (leading to an increased 

incidence of male progeny) (Pavelec et al., 2009). These eri mutants and rrf-3 

are required for the biogenesis and/or accumulation of ALG-3/4 sperm-specific 

26G-RNAs (Conine et al., 2010; Conine et al., 2013; Gent et al., 2009; Han et al., 

2009; Welker et al., 2010). It has also been reported that some allelles of rrf-3 

display more severe defects in meiotic cell divisions and X-chromosome 

segregation, as well as a paternally transmitted embryonic-lethal phenotype to 

progeny, which depends on the mutant sperm being produced at elevated 

temperatures (Gent et al., 2009). This suggests that the RdRP RRF-3 may have 

pleiotropic functions in the male germline outside of the ALG-3/4 pathway. 

 

Why is Sperm Development Sensitive to Temperature? 

In many animals, sperm development is inherently temperature sensitive 

(Rockett et al., 2001). The effects of elevated temperature during sperm 

development can also be epigenetically transmitted, causing phenotypes in 

developing embryos in mammals including decreased embryonic mass and 
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increased mortality rates (Jannes et al., 1998; Mieusset et al., 1991; Setchell et 

al., 1988). However, the molecular mechanism behind the temperature sensitivity 

of sperm development remains unknown. 

Our findings indicate that the gene expression programs required for 

spermatogenesis in C. elegans are sensitive to temperature. In wild-type males, 

the expression of many spermiogenesis genes was higher at 25°C than at 20°C. 

Intriguingly, WT sperm development is inherently sensitive to temperature, with 

males exhibiting a greater than 25% reduction in brood size at elevated 

temperatures (Hirsh and Vanderslice, 1976). The majority of the eri mutants (and 

alg-3/4) that exhibit TS male sterility are null alleles and the sperm-specific 26G-

RNAs are absent at all temperatures, thus, the TS phenotype cannot be due to 

conditional inactivation of the pathway. Rather it is more likely that the pathway 

functions to regulate an inherently temperature sensitive process (Conine et al., 

2010; Han et al., 2009; Pavelec et al., 2009).  

Here we have shown that ALG-3/4 and CSR-1 are required to initiate and 

maintain the activation of spermiogenesis genes at elevated temperatures. 

Failure to maintain spermiogenic gene expression in alg-3/4 and csr-1 mutants 

correlates with dramatic defects in spermatid activation and infertility in both 

mutant strains at elevated temperature. Thus, the ALG-3/4 and CSR-1 pathways 

appear to act as enhancers of gene expression that buffer the effects of 

temperature on sperm development. 
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Increasing temperature could increase the rate of meiosis and 

spermatogenic nuclear condensation, resulting in a shortened window to express 

spermiogenic transcripts required at the completion of meiosis. Thus, an active 

mechanism to identify and transcribe spermiogenic genes at high production 

rates, in the face of nuclear condensation would be essential at elevated 

temperatures, while partly dispensable at permissive temperatures. In this model, 

CSR-1 downstream of ALG-3/4 and 26G-RNAs would ensure a burst of 

spermiogenic transcription buffered against increasing temperature, loading the 

sperm with the factors necessary to undergo spermiogenesis. Loss of the 

pathway would then lead to a TS spermiogenic defect, due to an incomplete 

complement of the factors required for spermiogenesis (Conine et al., 2013).  

The increased condensation of chromatin during spermatogenesis is a 

highly conserved aspect of sperm development (Rathke et al., 2014). In order to 

develop a sperm competent for fertilization in any organism, the meiotic divisions 

of a 4C 1° spermatocyte into haploid spermatid must precede the postmeiotic 

differentiation of that sperm, from a round spermatid into a motile spermatozoa 

(spermiogenesis). Consequently, two separate, coordinately executed gene 

expression programs must exist. Spermiogenesis occurs during and/or after 

spermatogenic nuclear condensation, thus, the spermiogenic transcriptional 

program could occur prior to condensation and meiosis, with the mRNAs 

required then stored for translation after the completion of meiosis. Alternatively, 

the transcription of spermiogenic genes could occur during spermatogenic 
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nuclear condensation creating a stockpile of RNAs that are immediately 

translated to initiate spermiogenesis. The fact that haploid sperm in C. elegans 

and other organisms are devoid of ribosomes supports the latter hypothesis. 

If spermiogenic genes are transcribed specifically while the nucleus is 

condensing, then transcription would be dependent on the condensation state of 

chromatin associated with these genes. I hypothesize that this could be the 

reason for the conserved affect of temperature on sperm development. 

Therefore, an active process that allowed spermiogenic genes to sustain open 

chromatin during spermatogenic nuclear condensation would buffer against 

conditions that alter the dynamics of chromatin, such as increased temperature. 

In C. elegans the ALG-3/4 26G-RNA and CSR-1/22G-RNA pathway fill this 

niche, while in other organisms, different small RNAs or other mechanisms may 

serve an analogous function. Identifying these pathways may be of particular 

relevance to human fertility, as many cases of infertility are associated with 

unexplained male-specific defects.  

 

Small RNAs as Carriers of Epigenetic Information 

Small RNAs play central roles in most of the best-understood 

transgenerational epigenetic inheritance paradigms, most extensively in C. 

elegans, where phenotypes triggered artificially by small interfering RNAs 

(siRNAs) can be inherited for greater than 5 generations, and small RNAs 

provide an ancestral ‘memory’ of germline gene expression (Alcazar et al., 2008; 
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Ashe et al., 2012; Buckley et al., 2012; Grishok et al., 2000; Luteijn et al., 2012; 

Rathke et al., 2014; Seth et al., 2013; Shirayama et al., 2012; Vastenhouw et al., 

2006; Wedeles et al., 2013a). Transgenerational inheritance mediated by small 

RNAs is also widespread in plants, playing key roles in phenomena such as 

paramutation in maize (Arteaga-Vazquez and Chandler, 2010). In mammals, 

recent studies in mouse demonstrate that early life trauma in males can lead to 

changes in the RNA payload of sperm, which can epigenetically transmit 

behavioral and metabolic phenotypes to offspring. Intriguingly, injection of sperm 

small RNA from males subjected to early life trauma into control embryos can 

induce a subset of these phenotypes in the offspring, suggesting that the sperm 

small RNAs are epigenetically transmitting the phenotypes (Gapp et al., 2014). 

Here, I show that CSR-1 and 22G-RNAs functioning downstream of ALG-

3/4 also transmit epigenetic information about ancestral paternal germline gene 

expression via the small RNAs to succeeding generations, as CSR-1 and 22G-

RNAs are abundant in sperm (Conine et al., 2010; Conine et al., 2013). 

Remarkably, repeatedly backcrossing heterozygous hermaphrodites to 

homozygous alg-3/4 or csr-1 mutant males results in a progressive loss of fertility 

(germline-mortal phenotype) that could be rescued by wild-type sperm. This 

sterility is analogous to that of the alg-3/4 and csr-1 male TS fertility defect, 

resulting in temperature-dependent defective spermiogenesis (Conine et al., 

2013). Also, spermiogenic ALG-3/4 positively regulated targets exhibit reduced 

transcription in the heterozygotes derived from mutant paternal lines, suggesting 
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that males transmit a CSR-1 small RNA signal downstream of ALG-3/4 and 26G-

RNAs that provides a paternal memory of germline gene expression.  

As WAGOs associated with silencing 22G-RNAs downstream of PRG-

1/22G-RNAs, are also present in the sperm (Conine et al., 2010), and in accord 

with the idea of CSR-1 representing ‘self’, and WAGOs as ‘non-self’, it suggests 

that sperm and eggs transmit memories of previous ancestral germline gene 

expression to succeeding generations, to regulate intrinsic germline factors and 

to prevent invasion by foreign nucleic acids produced by transposons and 

viruses. In support of this, it was recently demonstrated in C. elegans through 

mRNA and small RNA sequencing of sperm, oocytes, and 1-cell embyros, that 

the majority of sperm small RNAs are transmitted to the embryo during 

fertilization as well as ~200 mRNAs (Stoeckius et al., 2014). These findings 

reveal a surprising, even breathtaking, scope of epigenetic programming in C. 

elegans sperm in which Argonautes and RNAs transmit not only silencing signals 

but also positive epigenetic signals that function transgenerationally to promote 

the expression of many spermiogenesis genes. 

Small RNAs are also abundant in the sperm of humans and other 

mammals (Krawetz et al., 2011; Peng et al., 2012). Exhibiting a complex 

repertoire of sequences that are delivered upon fertilization. The function of 

paternally transmitted small RNAs in mammals is unclear, creating exciting future 

avenues of experimentation and study. It is clear, however, that in organisms 

ranging from worm to man, that small RNAs could potentially carry vast amounts 
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of epigenetic information delivered to the zygote by sperm. This information has 

the potential to provide both inherent and acquired information about the 

environment to ensure adapted fitness during development.  

 

Conclusion 

Since the discovery of RNAi and miRNAs in C. elegans, a plethora of 

endogenous germline small RNAs have been discovered. In total, hundreds of 

thousands of unique sequences are represented, and associated with over 20 

Argonautes. A major challenge in the field is to distinguish the function of each 

Argonaute and their small RNA cofactors. This problem manifests itself most with 

the WAGOs, as 12 different Argonautes are required for silencing pathways 

downstream of RNAi, 21U-RNA (piRNA) targeting, and the ERI endogenous 

small RNA pathways. All 12 have to be knocked-out to completely block RNAi, 

however, for the other pathways it is unclear whether particular WAGOs are 

required. Related to this, a central questions is: How do 22G-RNAs with identical 

physical properties, 5´ guanosine triphosphate, 22nt long, and 3´ hydroxyl, 

downstream of at least 4 different pathways, get into the correct downstream 

Argonaute to elicit the correct biological response? It is unclear how CSR-1 and 

WAGOs each target thousands of distinct RNAs with little overlap, it is obviously 

biologically functional, as targeting CSR-1 and WAGOs produce very different 

outcomes.  
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Remarkably, small RNAs in the C. elegans germline can confer both 

positive and negative regulation of RNAs, regulating RNAs both transcriptionally 

and posttranscriptionally. It would not be surprising to discover that germline 

smalls RNAs also regulate translation or other aspects of gene expression. Some 

of these functions appear to be unique to the nematode lineage, as RdRPs are 

rare among metazoans genomes, and the majority of these small RNA pathways 

require their activity. Still, there are definite correlations between many aspects of 

C. elegans small RNA pathways and those of other well studied model 

organisms, such as flies and mice. The basics of the miRNA pathway are 

conserved in each, as well as the exogenous RNAi pathway, besides the potency 

due to amplification of the initial dsRNA trigger by RdRPs in C. elegans. A 

conserved function of the piRNAs in all three systems is to silence transposons; 

again it appears that worms may use a unique mechanism via RdRP activity. 

Intriguingly, Piwi Argonautes localize to germ granules in each of these 

organisms, leading to the hypothesis that these granules could be factories for 

piRNA/small RNA production and downstream silencing. Many of the C. elegans 

Argonautes localize to P granules, suggesting that they are indeed important for 

small RNA biogenesis and/or function.  

The function of pachytene piRNAs in mammals is unknown, and mutations 

abrogating the pathway are sterile due to the complete arrest of haploid sperm 

during spermatogenesis. Interestingly, a very similar phenotype is exhibited by 

PRG-1/21U-RNA (piRNA) and ALG-3/4 sperm 26G-RNA mutants in C. elegans, 
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however, in worms the defect is temperature dependent. The ALG-3/4 pathway is 

required to promote the transcription of spermiogenic genes, and loss of this 

activity is thought to contribute to the phenotype. A similar activity has been 

proposed for MIWI and mouse pachytene piRNAs although this has yet to be 

formally proven. It is possible that the ALG-3/4 26G-RNA pathway C. elegans 

and MIWI/ pachytene piRNAs in mice could be providing analogous functions. 

ALG-3/4 are AGO-clade Argonautes; therefore, sperm 26G-RNAs are not 

considered piRNAs, as they are also Dicer-dependent. Nonetheless, they could 

be functionally analogous to mammalian piRNAs, raising the question: What is a 

piRNA? Is binding a Piwi Argonaute an appropriate definition, or should 

expression and function also be considered? To that end, ERGO-1 is a Piwi-

clade Argonaute, embryonic 26G-RNAs RNAs are modified at their 3´ termini 

with 2ʹ′ O-methylation, analogous to piRNAs in flies and mouse; however, they 

are not considered piRNAs in the literature. ERGO-1 26G-RNAs are Dicer-

dependent, perhaps lending to this distinction, other than that it is unclear why 

they are not considered piRNAs.  

The nematode C. elegans as a model organism of study has been an 

essential tool to the understanding of RNAi and small RNAs. Since their 

discovery small RNAs have been identified as intrinsic regulators of gene 

expression in all forms of life, suggesting that the ancestor of living things had 

some form of a small RNA pathway. With their tremendous breadth of 

conservation, small RNA pathways have evolved to fill a plethora of cellular 
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niches, achieving many unique functions. No place in biology is this more evident 

than the C. elegans germline, where a ‘Small RNA World’ functions prominently 

in gene expression, reproduction, genomic immunity and adaptability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159

BIBLIOGRAPHY 

 
Ahn, S.H., Kim, M., and Buratowski, S. (2004). Phosphorylation of serine 2 within the 
RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol 
Cell 13, 67-76. 
 
Alcazar, R.M., Lin, R., and Fire, A.Z. (2008). Transmission dynamics of heritable 
silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180, 
1275-1288. 

Alvarez-Saavedra, E., and Horvitz, H.R. (2010). Many families of C. elegans microRNAs 
are not essential for development or viability. Curr Biol 20, 367-373. 

Ambros, V. (1989). A hierarchy of regulatory genes controls a larva-to-adult 
developmental switch in C. elegans. Cell 57, 49-57. 

Anderson, P., and Kedersha, N. (2009). RNA granules: post-transcriptional and 
epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10, 430-436. 

Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., 
Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A 
novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207.  

Aravin, A.A., Hannon, G.J., and Brennecke, J. (2007). The Piwi-piRNA pathway 
provides an adaptive defense in the transposon arms race. Science 318, 761-764.  

Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., 
Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during 
Drosophila melanogaster development. Dev Cell 5, 337-350. 

Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M., and Gvozdev, 
V.A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and 
transposable elements in the D. melanogaster germline. Curr Biol 11, 1017-1027. 

Aravin, A.A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K.F., 
Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons 
is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799. 

Aravin, A.A., Sachidanandam, R., Girard, A., Fejes-Toth, K., and Hannon, G.J. (2007). 
Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 
316, 744-747. 

Argon, Y., and Ward, S. (1980). Caenorhabditis elegans fertilization-defective mutants 
with abnormal sperm. Genetics 96, 413-433. 



160

Arteaga-Vazquez, M.A., and Chandler, V.L. (2010). Paramutation in maize: RNA 
mediated trans-generational gene silencing. Curr Opin Genet Dev 20, 156-163. 

Ashe, A., Sapetschnig, A., Weick, E.M., Mitchell, J., Bagijn, M.P., Cording, A.C., 
Doebley, A.L., Goldstein, L.D., Lehrbach, N.J., Le Pen, J., et al. (2012). piRNAs can 
trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 
88-99. 

Bagijn, M.P., Goldstein, L.D., Sapetschnig, A., Weick, E.M., Bouasker, S., Lehrbach, 
N.J., Simard, M.J., and Miska, E.A. (2012). Function, targets, and evolution of 
Caenorhabditis elegans piRNAs. Science 337, 574-578.  

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 
116, 281-297. 

Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 
215-233. 

Bartel, D.P., and Unrau, P.J. (1999). Constructing an RNA world. Trends Cell Biol 9, 
M9-M13. 

Batista, P.J., Ruby, J.G., Claycomb, J.M., Chiang, R., Fahlgren, N., Kasschau, K.D., 
Chaves, D.A., Gu, W., Vasale, J.J., Duan, S., et al. (2008). PRG-1 and 21U-RNAs 
interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 31, 67-
78. 

Beyret, E., and Lin, H. (2011). Pinpointing the expression of piRNAs and function of the 
PIWI protein subfamily during spermatogenesis in the mouse. Developmental biology 
355, 215-226. 

Billi, A.C., Alessi, A.F., Khivansara, V., Han, T., Freeberg, M., Mitani, S., and Kim, J.K. 
(2012). The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes 
select subclasses of germline small RNAs. PLoS Genet 8, e1002617. 

Billi, A.C., Freeberg, M.A., Day, A.M., Chun, S.Y., Khivansara, V., and Kim, J.K. 
(2013). A conserved upstream motif orchestrates autonomous, germline-enriched 
expression of Caenorhabditis elegans piRNAs. PLoS Genet 9, e1003392. 

Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). 
AGO1 defines a novel locus of Arabidopsis controlling leaf development. Embo J 17, 
170-180. 

Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and 
Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of 
transposon activity in Drosophila. Cell 128, 1089-1103. 



161

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.  

Brennecke, J., Malone, C.D., Aravin, A.A., Sachidanandam, R., Stark, A., and Hannon, 
G.J. (2008). An epigenetic role for maternally inherited piRNAs in transposon silencing. 
Science 322, 1387-1392. 

Buckley, B.A., Burkhart, K.B., Gu, S.G., Spracklin, G., Kershner, A., Fritz, H., Kimble, 
J., Fire, A., and Kennedy, S. (2012). A nuclear Argonaute promotes multigenerational 
epigenetic inheritance and germline immortality. Nature 489, 447-451.  

Burke, D.J., and Ward, S. (1983). Identification of a large multigene family encoding the 
major sperm protein of Caenorhabditis elegans. J Mol Biol 171, 1-29 

Burkhart, K.B., Guang, S., Buckley, B.A., Wong, L., Bochner, A.F., and Kennedy, S. 
(2011). A pre-mRNA-associating factor links endogenous siRNAs to chromatin 
regulation. PLoS Genet 7, e1002249. 

Burton, N.O., Burkhart, K.B., and Kennedy, S. (2011). Nuclear RNAi maintains heritable 
gene silencing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108, 19683-19688 

Bushati, N., and Cohen, S.M. (2007). microRNA functions. Annu Rev Cell Dev Biol 23, 
175-205. 

Buttery, S.M., Ekman, G.C., Seavy, M., Stewart, M., and Roberts, T.M. (2003). 
Dissection of the Ascaris sperm motility machinery identifies key proteins involved in 
major sperm protein-based amoeboid locomotion. Mol Biol Cell 14, 5082-5088. 

Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed 
from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 1957-
1966. 

Calarco, J.P., and Martienssen, R.A. (2011). Genome reprogramming and small 
interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev 21, 134-139. 

Carmell, M.A., Girard, A., van de Kant, H.J., Bourc'his, D., Bestor, T.H., de Rooij, D.G., 
and Hannon, G.J. (2007). MIWI2 is essential for spermatogenesis and repression of 
transposons in the mouse male germline. Dev Cell 12, 503-514. 

Cecere, G., Hoersch, S., O'Keeffe, S., Sachidanandam, R., and Grishok, A. (2014). 
Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. 
Nat Struct Mol Biol 21, 358-365. 

Cecere, G., Zheng, G.X., Mansisidor, A.R., Klymko, K.E., and Grishok, A. (2012). 
Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol Cell 47, 
734-745. 



162

Cech, T.R. (2009). Crawling out of the RNA world. Cell 136, 599-602. 

Cerutti, H., and Casas-Mollano, J.A. (2006). On the origin and functions of RNA-
mediated silencing: from protists to man. Curr Genet 50, 81-99. 

Chen, P.Y., Manninga, H., Slanchev, K., Chien, M., Russo, J.J., Ju, J., Sheridan, R., John, 
B., Marks, D.S., Gaidatzis, D., et al. (2005). The developmental miRNA profiles of 
zebrafish as determined by small RNA cloning. Genes Dev 19, 1288-1293. 

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, 
K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA 
processing and gene silencing. Nature 436, 740-744. 

Chu, D.S., Liu, H., Nix, P., Wu, T.F., Ralston, E.J., Yates, J.R., 3rd, and Meyer, B.J. 
(2006). Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. 
Nature 443, 101-105 

Clark, G.F. (2013). The role of carbohydrate recognition during human sperm-egg 
binding. Hum Reprod 28, 566-577. 

Claycomb, J.M., Batista, P.J., Pang, K.M., Gu, W., Vasale, J.J., van Wolfswinkel, J.C., 
Chaves, D.A., Shirayama, M., Mitani, S., Ketting, R.F., et al. (2009). The Argonaute 
CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. 
Cell 139, 123-134. 

Conine, C.C., Batista, P.J., Gu, W., Claycomb, J.M., Chaves, D.A., Shirayama, M., and 
Mello, C.C. (2010). Argonautes ALG-3 and ALG-4 are required for spermatogenesis-
specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad 
Sci U S A 107, 3588-3593. 

Conine, C.C., Moresco, J.J., Gu, W., Shirayama, M., Conte, D., Jr., Yates, J.R., 3rd, and 
Mello, C.C. (2013). Argonautes Promote Male Fertility and Provide a Paternal Memory 
of Germline Gene Expression in C. elegans. Cell 155, 1532-1544. 

Crick, F.H. (1968). The origin of the genetic code. J Mol Biol 38, 367-379. 

Das, P.P., Bagijn, M.P., Goldstein, L.D., Woolford, J.R., Lehrbach, N.J., Sapetschnig, A., 
Buhecha, H.R., Gilchrist, M.J., Howe, K.L., Stark, R., et al. (2008). Piwi and piRNAs act 
upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the 
Caenorhabditis elegans germline. Mol Cell 31, 79-90. 

De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, 
C., Antony, C., Moreira, P.N., Enright, A.J., and O'Carroll, D. (2011). The endonuclease 
activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 
259-263. 



163

Deng, W., and Lin, H. (2002). miwi, a murine homolog of piwi, encodes a cytoplasmic 
protein essential for spermatogenesis. Dev Cell 2, 819-830. 

Denli, A.M., and Hannon, G.J. (2003). RNAi: an ever-growing puzzle. Trends Biochem 
Sci 28, 196-201. 

Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). 
Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235. 

Duchaine, T.F., Wohlschlegel, J.A., Kennedy, S., Bei, Y., Conte, D., Jr., Pang, K., 
Brownell, D.R., Harding, S., Mitani, S., Ruvkun, G., et al. (2006). Functional proteomics 
reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated 
pathways. Cell 124, 343-354. 

Dunoyer, P., Brosnan, C.A., Schott, G., Wang, Y., Jay, F., Alioua, A., Himber, C., and 
Voinnet, O. (2010). An endogenous, systemic RNAi pathway in plants. Embo J 29, 1699-
1712. 

Eddy, E.M. (2002). Male germ cell gene expression. Recent Prog Horm Res 57, 103-128. 
 
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 
(2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 
mammalian cells. Nature 411, 494-498. 

Erhard, K.F., Jr., and Hollick, J.B. (2011). Paramutation: a process for acquiring trans-
generational regulatory states. Curr Opin Plant Biol 14, 210-216. 

Fang, W., Wang, X., Bracht, J.R., Nowacki, M., and Landweber, L.F. (2012). Piwi-
interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. 
Cell 151, 1243-1255. 

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). 
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis 
elegans. Nature 391, 806-811. 

Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian 
mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105. 

Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, 
E., and Mansuy, I.M. (2014). Implication of sperm RNAs in transgenerational inheritance 
of the effects of early trauma in mice. Nat Neurosci 17, 667-669. 

Garcia-Lopez, J., Hourcade Jde, D., Alonso, L., Cardenas, D.B., and del Mazo, J. (2014). 
Global characterization and target identification of piRNAs and endo-siRNAs in mouse 
gametes and zygotes. Biochim Biophys Acta 1839, 463-475. 



164

Gassmann, R., Rechtsteiner, A., Yuen, K.W., Muroyama, A., Egelhofer, T., Gaydos, L., 
Barron, F., Maddox, P., Essex, A., Monen, J., et al. (2012). An inverse relationship to 
germline transcription defines centromeric chromatin in C. elegans. Nature 484, 534-537. 

Gent, J.I., Lamm, A.T., Pavelec, D.M., Maniar, J.M., Parameswaran, P., Tao, L., 
Kennedy, S., and Fire, A.Z. (2010). Distinct phases of siRNA synthesis in an endogenous 
RNAi pathway in C. elegans soma. Mol Cell 37, 679-689. 

Gent, J.I., Schvarzstein, M., Villeneuve, A.M., Gu, S.G., Jantsch, V., Fire, A.Z., and 
Baudrimont, A. (2009). A Caenorhabditis elegans RNA-directed RNA polymerase in 
sperm development and endogenous RNA interference. Genetics 183, 1297-1314. 

Ghildiyal, M., Seitz, H., Horwich, M.D., Li, C., Du, T., Lee, S., Xu, J., Kittler, E.L., 
Zapp, M.L., Weng, Z., et al. (2008). Endogenous siRNAs derived from transposons and 
mRNAs in Drosophila somatic cells. Science 320, 1077-1081. 

Ghildiyal, M., and Zamore, P.D. (2009). Small silencing RNAs: an expanding universe. 
Nat Rev Genet 10, 94-108. 

Gilbert, W. (1986). Origin of Life - The RNA World. Nature 319, 618-618. 

Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-
specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202. 

Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y., Kang, J.Y., Wang, X., Li, H., 
Hua, M.M., et al. (2014). Pachytene piRNAs instruct massive mRNA elimination during 
late spermiogenesis. Cell Res 24, 680-700. 

Grant-Downton, R., Le Trionnaire, G., Schmid, R., Rodriguez-Enriquez, J., Hafidh, S., 
Mehdi, S., Twell, D., and Dickinson, H. (2009). MicroRNA and tasiRNA diversity in 
mature pollen of Arabidopsis thaliana. BMC Genomics 10, 643. 

Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., 
Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference 
regulate expression of the small temporal RNAs that control C. elegans developmental 
timing. Cell 106, 23-34. 

Grishok, A., Tabara, H., and Mello, C.C. (2000). Genetic requirements for inheritance of 
RNAi in C. elegans. Science 287, 2494-2497. 

Grivna, S.T., Beyret, E., Wang, Z., and Lin, H. (2006a). A novel class of small RNAs in 
mouse spermatogenic cells. Genes Dev 20, 1709-1714. 



165

Grivna, S.T., Pyhtila, B., and Lin, H. (2006b). MIWI associates with translational 
machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc 
Natl Acad Sci U S A 103, 13415-13420. 

Gu, W., Lee, H.C., Chaves, D., Youngman, E.M., Pazour, G.J., Conte, D., Jr., and Mello, 
C.C. (2012). CapSeq and CIP-TAP identify Pol II start sites and reveal capped small 
RNAs as C. elegans piRNA precursors. Cell 151, 1488-1500. 

Gu, W., Shirayama, M., Conte, D., Jr., Vasale, J., Batista, P.J., Claycomb, J.M., Moresco, 
J.J., Youngman, E.M., Keys, J., Stoltz, M.J., et al. (2009). Distinct argonaute-mediated 
22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36, 
231-244. 

Guang, S., Bochner, A.F., Pavelec, D.M., Burkhart, K.B., Harding, S., Lachowiec, J., and 
Kennedy, S. (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. 
Science 321, 537-541. 

Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y., Nagami, T., 
Siomi, H., and Siomi, M.C. (2007). A slicer-mediated mechanism for repeat-associated 
siRNA 5' end formation in Drosophila. Science 315, 1587-1590. 

Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in 
posttranscriptional gene silencing in plants. Science 286, 950-952. 

Han, B.W., and Zamore, P.D. (2014). piRNAs. Curr Biol 24, R730-733. 

Han, T., Manoharan, A.P., Harkins, T.T., Bouffard, P., Fitzpatrick, C., Chu, D.S., 
Thierry-Mieg, D., Thierry-Mieg, J., and Kim, J.K. (2009). 26G endo-siRNAs regulate 
spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad 
Sci U S A 106, 18674-18679. 

Haussecker, D., Cao, D., Huang, Y., Parameswaran, P., Fire, A.Z., and Kay, M.A. 
(2008). Capped small RNAs and MOV10 in human hepatitis delta virus replication. Nat 
Struct Mol Biol 15, 714-721. 

Hirsh, D., and Vanderslice, R. (1976). Temperature-sensitive developmental mutants of 
Caenorhabditis elegans. Dev Biol 49, 220-235. 

Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, 
H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., et al. (2007). A role for Piwi and 
piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69-82. 

Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. 
(2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of 
the let-7 small temporal RNA. Science 293, 834-838. 



166

Hutvagner, G., and Simard, M.J. (2008). Argonaute proteins: key players in RNA 
silencing. Nat Rev Mol Cell Biol 9, 22-32. 

Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi 
enzyme complex. Science 297, 2056-2060. 

Ibanez-Ventoso, C., Vora, M., and Driscoll, M. (2008). Sequence relationships among C. 
elegans, D. melanogaster and human microRNAs highlight the extensive conservation of 
microRNAs in biology. PLoS One 3, e2818. 

Jablonka, E., and Raz, G. (2009). Transgenerational epigenetic inheritance: prevalence, 
mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84, 
131-176. 

Jannes, P., Spiessens, C., Van der Auwera, I., D'Hooghe, T., Verhoeven, G., and 
Vanderschueren, D. (1998). Male subfertility induced by acute scrotal heating affects 
embryo quality in normal female mice. Hum Reprod 13, 372-375. 

Joshua-Tor, L., and Hannon, G.J. (2011). Ancestral roles of small RNAs: an Ago-centric 
perspective. Cold Spring Harb Perspect Biol 3, a003772. 

Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le 
Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the 
Caenorhabditis elegans genome using RNAi. Nature 421, 231-237. 

Kamminga, L.M., Luteijn, M.J., den Broeder, M.J., Redl, S., Kaaij, L.J., Roovers, E.F., 
Ladurner, P., Berezikov, E., and Ketting, R.F. (2010). Hen1 is required for oocyte 
development and piRNA stability in zebrafish. Embo J 29, 3688-3700. 

Kamminga, L.M., van Wolfswinkel, J.C., Luteijn, M.J., Kaaij, L.J., Bagijn, M.P., 
Sapetschnig, A., Miska, E.A., Berezikov, E., and Ketting, R.F. (2012). Differential 
impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of 
Caenorhabditis elegans. PLoS Genet 8, e1002702. 

Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., Okada, T.N., Siomi, 
M.C., and Siomi, H. (2008). Drosophila endogenous small RNAs bind to Argonaute 2 in 
somatic cells. Nature 453, 793-797. 

Kawasaki, I., Shim, Y.H., Kirchner, J., Kaminker, J., Wood, W.B., and Strome, S. 
(1998). PGL-1, a predicted RNA-binding component of germ granules, is essential for 
fertility in C. elegans. Cell 94, 635-645. 

Kelly, W.G., Schaner, C.E., Dernburg, A.F., Lee, M.H., Kim, S.K., Villeneuve, A.M., 
and Reinke, V. (2002). X-chromosome silencing in the germline of C. elegans. 
Development 129, 479-492. 



167

 
Kennedy, S., Wang, D., and Ruvkun, G. (2004). A conserved siRNA-degrading RNase 
negatively regulates RNA interference in C. elegans. Nature 427, 645-649. 

Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and Plasterk, R.H. 
(2001). Dicer functions in RNA interference and in synthesis of small RNA involved in 
developmental timing in C. elegans. Genes Dev 15, 2654-2659. 

Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs 
exhibit strand bias. Cell 115, 209-216. 

Kirino, Y., and Mourelatos, Z. (2007a). The mouse homolog of HEN1 is a potential 
methylase for Piwi-interacting RNAs. RNA 13, 1397-1401. 

Kirino, Y., and Mourelatos, Z. (2007b). Mouse Piwi-interacting RNAs are 2'-O-
methylated at their 3' termini. Nat Struct Mol Biol 14, 347-348. 

Klattenhoff, C., and Theurkauf, W. (2008). Biogenesis and germline functions of 
piRNAs. Development 135, 3-9. 

Knight, S.W., and Bass, B.L. (2001). A role for the RNase III enzyme DCR-1 in RNA 
interference and germ line development in Caenorhabditis elegans. Science 293, 2269-
2271. 

Kotaja, N., Bhattacharyya, S.N., Jaskiewicz, L., Kimmins, S., Parvinen, M., Filipowicz, 
W., and Sassone-Corsi, P. (2006). The chromatoid body of male germ cells: similarity 
with processing bodies and presence of Dicer and microRNA pathway components. Proc 
Natl Acad Sci U S A 103, 2647-2652. 

Krawetz, S.A., Kruger, A., Lalancette, C., Tagett, R., Anton, E., Draghici, S., and 
Diamond, M.P. (2011). A survey of small RNAs in human sperm. Hum Reprod 26, 3401-
3412. 

Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., Isobe, T., Asada, N., Fujita, Y., Ikawa, 
M., Iwai, N., Okabe, M., Deng, W., et al. (2004). Mili, a mammalian member of piwi 
family gene, is essential for spermatogenesis. Development 131, 839-849. 

Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., 
Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of 
retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine 
fetal testes. Genes Dev 22, 908-917. 

Kuznicki, K.A., Smith, P.A., Leung-Chiu, W.M., Estevez, A.O., Scott, H.C., and Bennett, 
K.L. (2000). Combinatorial RNA interference indicates GLH-4 can compensate for 



168

GLH-1; these two P granule components are critical for fertility in C. elegans. 
Development 127, 2907-2916. 

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of 
novel genes coding for small expressed RNAs. Science 294, 853-858. 

Lai, E.C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that 
mediate negative post-transcriptional regulation. Nat Genet 30, 363-364. 

Lau, N.C. (2010). Small RNAs in the animal gonad: guarding genomes and guiding 
development. Int J Biochem Cell Biol 42, 1334-1347. 

Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny 
RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862. 

Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P., and 
Kingston, R.E. (2006). Characterization of the piRNA complex from rat testes. Science 
313, 363-367. 

Lee, H.C., Gu, W., Shirayama, M., Youngman, E., Conte, D., Jr., and Mello, C.C. (2012). 
C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 
150, 78-87. 

Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis 
elegans. Science 294, 862-864. 

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene 
lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. 

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., 
Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. 
Nature 425, 415-419. 

Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: 
stepwise processing and subcellular localization. EMBO J 21, 4663-4670. 

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). 
MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060. 

L'Hernault, S.W. (2006). Spermatogenesis. WormBook, 1-14. 

Li, C., Vagin, V.V., Lee, S., Xu, J., Ma, S., Xi, H., Seitz, H., Horwich, M.D., Syrzycka, 
M., Honda, B.M., et al. (2009). Collapse of germline piRNAs in the absence of 
Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509-521. 



169

Li, X.Z., Roy, C.K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B.W., Xu, J., Moore, 
M.J., Schimenti, J.C., Weng, Z., et al. (2013). An ancient transcription factor initiates the 
burst of piRNA production during early meiosis in mouse testes. Mol Cell 50, 67-81. 

Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., 
Burge, C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes 
Dev 17, 991-1008. 

Lin, H., and Spradling, A.C. (1997). A novel group of pumilio mutations affects the 
asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 
2463-2476. 

Liu, W.M., Pang, R.T., Chiu, P.C., Wong, B.P., Lao, K., Lee, K.F., and Yeung, W.S. 
(2012). Sperm-borne microRNA-34c is required for the first cleavage division in mouse. 
Proc Natl Acad Sci U S A 109, 490-494. 

Luteijn, M.J., van Bergeijk, P., Kaaij, L.J., Almeida, M.V., Roovers, E.F., Berezikov, E., 
and Ketting, R.F. (2012). Extremely stable Piwi-induced gene silencing in Caenorhabditis 
elegans. EMBO J 31, 3422-3430. 

Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature 456, 
18-21. 

Makarova, K.S., Wolf, Y.I., van der Oost, J., and Koonin, E.V. (2009). Prokaryotic 
homologs of Argonaute proteins are predicted to function as key components of a novel 
system of defense against mobile genetic elements. Biol Direct 4, 29. 

Malone, C.D., Brennecke, J., Dus, M., Stark, A., McCombie, W.R., Sachidanandam, R., 
and Hannon, G.J. (2009). Specialized piRNA pathways act in germline and somatic 
tissues of the Drosophila ovary. Cell 137, 522-535. 

Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-
stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574. 

Massirer, K.B., Perez, S.G., Mondol, V., and Pasquinelli, A.E. (2012). The miR-35-41 
family of microRNAs regulates RNAi sensitivity in Caenorhabditis elegans. PLoS Genet 
8, e1002536. 

McJunkin, K., and Ambros, V. (2014). The Embryonic mir-35 Family of MicroRNAs 
Promotes Multiple Aspects of Fecundity in C. elegans. G3 (Bethesda). 

Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nat Rev 
Genet 14, 447-459. 



170

Mieusset, R., Quintana Casares, P.I., Sanchez-Partida, L.G., Sowerbutts, S.F., Zupp, J.L., 
and Setchell, B.P. (1991). The effects of moderate heating of the testes and epididymides 
of rams by scrotal insulation on body temperature, respiratory rate, spermatozoa output 
and motility, and on fertility and embryonic survival in ewes inseminated with frozen 
semen. Ann N Y Acad Sci 637, 445-458. 

Miller, M.A. (2006). Sperm and oocyte isolation methods for biochemical and proteomic 
analysis. Methods Mol Biol 351, 193-201. 

Montgomery, T.A., Rim, Y.S., Zhang, C., Dowen, R.H., Phillips, C.M., Fischer, S.E., and 
Ruvkun, G. (2012). PIWI associated siRNAs and piRNAs specifically require the 
Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 8, e1002616. 

Nechaev, S., Fargo, D.C., dos Santos, G., Liu, L., Gao, Y., and Adelman, K. (2010). 
Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest 
of Pol II in Drosophila. Science 327, 335-338. 

Nishibu, T., Hayashida, Y., Tani, S., Kurono, S., Kojima-Kita, K., Ukekawa, R., 
Kurokawa, T., Kuramochi-Miyagawa, S., Nakano, T., Inoue, K., et al. (2012). 
Identification of MIWI-associated Poly(A) RNAs by immunoprecipitation with an anti-
MIWI monoclonal antibody. Biosci Trends 6, 248-261. 

Okamura, K., Chung, W.J., Ruby, J.G., Guo, H., Bartel, D.P., and Lai, E.C. (2008). The 
Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 
453, 803-806. 

Orgel, L.E. (1968). Evolution of the genetic apparatus. J Mol Biol 38, 381-393. 

Pak, J., and Fire, A. (2007). Distinct populations of primary and secondary effectors 
during RNAi in C. elegans. Science 315, 241-244. 

Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., 
Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the 
sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 
86-89. 

Pavelec, D.M., Lachowiec, J., Duchaine, T.F., Smith, H.E., and Kennedy, S. (2009). 
Requirement for the ERI/DICER complex in endogenous RNA interference and sperm 
development in Caenorhabditis elegans. Genetics 183, 1283-1295. 

Pelisson, A., Song, S.U., Prud'homme, N., Smith, P.A., Bucheton, A., and Corces, V.G. 
(1994). Gypsy transposition correlates with the production of a retroviral envelope-like 
protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 13, 
4401-4411. 



171

Peng, H., Shi, J., Zhang, Y., Zhang, H., Liao, S., Li, W., Lei, L., Han, C., Ning, L., Cao, 
Y., et al. (2012). A novel class of tRNA-derived small RNAs extremely enriched in 
mature mouse sperm. Cell Res 22, 1609-1612. 

Praitis, V., Casey, E., Collar, D., and Austin, J. (2001). Creation of low-copy integrated 
transgenic lines in Caenorhabditis elegans. Genetics 157, 1217-1226. 

Rando, O.J. (2012). Daddy issues: paternal effects on phenotype. Cell 151, 702-708. 
Reinke, V., Gil, I.S., Ward, S., and Kazmer, K. (2004). Genome-wide germline-enriched 
and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311-
323. 

Rathke, C., Baarends, W.M., Awe, S., and Renkawitz-Pohl, R. (2014). Chromatin 
dynamics during spermiogenesis. Biochim Biophys Acta 1839, 155-168. 

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., 
Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates 
developmental timing in Caenorhabditis elegans. Nature 403, 901-906. 

Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). 
MicroRNAs in plants. Genes Dev 16, 1616-1626. 

Reinke, V., Gil, I.S., Ward, S., and Kazmer, K. (2004). Genome-wide germline-enriched 
and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311-
323. 

Robine, N., Lau, N.C., Balla, S., Jin, Z., Okamura, K., Kuramochi-Miyagawa, S., Blower, 
M.D., and Lai, E.C. (2009). A broadly conserved pathway generates 3'UTR-directed 
primary piRNAs. Curr Biol 19, 2066-2076. 

Rockett, J.C., Mapp, F.L., Garges, J.B., Luft, J.C., Mori, C., and Dix, D.J. (2001). Effects 
of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult 
male mice. Biol Reprod 65, 229-239. 
 

Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, 
D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and 
endogenous siRNAs in C. elegans. Cell 127, 1193-1207. 

Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass 
Drosha processing. Nature 448, 83-86. 

Saito, K., Ishizuka, A., Siomi, H., and Siomi, M.C. (2005). Processing of pre-microRNAs 
by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3, e235. 



172

Saito, K., Nishida, K.M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H., 
and Siomi, M.C. (2006). Specific association of Piwi with rasiRNAs derived from 
retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20, 
2214-2222. 

Saito, K., Sakaguchi, Y., Suzuki, T., Siomi, H., and Siomi, M.C. (2007). Pimet, the 
Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at 
their 3' ends. Genes Dev 21, 1603-1608. 

Sakai, N., Sawada, M.T., and Sawada, H. (2004). Non-traditional roles of ubiquitin-
proteasome system in fertilization and gametogenesis. Int J Biochem Cell Biol 36, 776-
784. 

Schedl, T., and Kimble, J. (1988). fog-2, a germ-line-specific sex determination gene 
required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics 119, 43-
61. 

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). 
Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208. 

Schwarz, D.S., Hutvagner, G., Haley, B., and Zamore, P.D. (2002). Evidence that 
siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. 
Mol Cell 10, 537-548. 

Seila, A.C., Calabrese, J.M., Levine, S.S., Yeo, G.W., Rahl, P.B., Flynn, R.A., Young, 
R.A., and Sharp, P.A. (2008). Divergent transcription from active promoters. Science 
322, 1849-1851. 

Setchell, B.P., D'Occhio, M.J., Hall, M.J., Laurie, M.S., Tucker, M.J., and Zupp, J.L. 
(1988). Is embryonic mortality increased in normal female rats mated to subfertile males? 
J Reprod Fertil 82, 567-574. 

Seth, M., Shirayama, M., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. (2013). The 
C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote 
germline gene expression. Dev Cell 27, 656-663. 

Shakes, D.C., and Ward, S. (1989). Initiation of spermiogenesis in C. elegans: a 
pharmacological and genetic analysis. Developmental biology 134, 189-200. 

Shakes, D.C., Wu, J.C., Sadler, P.L., Laprade, K., Moore, L.L., Noritake, A., and Chu, 
D.S. (2009). Spermatogenesis-specific features of the meiotic program in Caenorhabditis 
elegans. PLoS Genet 5, e1000611. 



173

She, X., Xu, X., Fedotov, A., Kelly, W.G., and Maine, E.M. (2009). Regulation of 
heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans 
meiosis by components of a small RNA-mediated pathway. PLoS Genet 5, e1000624. 

Shirayama, M., Seth, M., Lee, H.C., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. 
(2012). piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans 
germline. Cell 150, 65-77. 

Sijen, T., Steiner, F.A., Thijssen, K.L., and Plasterk, R.H. (2007). Secondary siRNAs 
result from unprimed RNA synthesis and form a distinct class. Science 315, 244-247. 

Simmer, F., Tijsterman, M., Parrish, S., Koushika, S.P., Nonet, M.L., Fire, A., Ahringer, 
J., and Plasterk, R.H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 
makes C. elegans hypersensitive to RNAi. Curr Biol 12, 1317-1319. 

Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of 
Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437. 

Stoeckius, M., Grun, D., and Rajewsky, N. (2014). Paternal RNA contributions in the 
Caenorhabditis elegans zygote. EMBO J 33, 1740-1750. 

Tabara, H., Grishok, A., and Mello, C.C. (1998). RNAi in C. elegans: soaking in the 
genome sequence. Science 282, 430-431. 

Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., 
and Mello, C.C. (1999). The rde-1 gene, RNA interference, and transposon silencing in 
C. elegans. Cell 99, 123-132. 

Tabara, H., Yigit, E., Siomi, H., and Mello, C.C. (2002). The dsRNA binding protein 
RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. 
elegans. Cell 109, 861-871. 

Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E., 
Anger, M., Sachidanandam, R., Schultz, R.M., et al. (2008). Pseudogene-derived small 
interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534-538. 

Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A., and Driscoll, M. (2000). 
Heritable and inducible genetic interference by double-stranded RNA encoded by 
transgenes. Nat Genet 24, 180-183. 

Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 
854. 

Tolia, N.H., and Joshua-Tor, L. (2007). Slicer and the argonautes. Nat Chem Biol 3, 36-
43. 



174

Updike, D., and Strome, S. (2010). P granule assembly and function in Caenorhabditis 
elegans germ cells. J Androl 31, 53-60. 

Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006). A 
distinct small RNA pathway silences selfish genetic elements in the germline. Science 
313, 320-324. 

Van Ex, F., Jacob, Y., and Martienssen, R.A. (2011). Multiple roles for small RNAs 
during plant reproduction. Curr Opin Plant Biol 14, 588-593. 

Vasale, J.J., Gu, W., Thivierge, C., Batista, P.J., Claycomb, J.M., Youngman, E.M., 
Duchaine, T.F., Mello, C.C., and Conte, D., Jr. (2010). Sequential rounds of RNA-
dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-
1/Argonaute pathway. Proc Natl Acad Sci U S A 107, 3582-3587. 

Vastenhouw, N.L., Brunschwig, K., Okihara, K.L., Muller, F., Tijsterman, M., and 
Plasterk, R.H. (2006). Gene expression: long-term gene silencing by RNAi. Nature 442, 
882. 

Voronina, E., Seydoux, G., Sassone-Corsi, P., and Nagamori, I. (2011). RNA granules in 
germ cells. Cold Spring Harb Perspect Biol 3. 

Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B.D., and 
Mourelatos, Z. (2012). Mili and Miwi target RNA repertoire reveals piRNA biogenesis 
and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19, 773-781. 

Wang, G., and Reinke, V. (2008). A C. elegans Piwi, PRG-1, regulates 21U-RNAs 
during spermatogenesis. Curr Biol 18, 861-867. 

Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., and Patel, D.J. (2008a). Structure of 
an argonaute silencing complex with a seed-containing guide DNA and target RNA 
duplex. Nature 456, 921-926. 

Wang, Y., Sheng, G., Juranek, S., Tuschl, T., and Patel, D.J. (2008b). Structure of the 
guide-strand-containing argonaute silencing complex. Nature 456, 209-213. 

Ward, S., and Miwa, J. (1978). Characterization of temperature-sensitive, fertilization-
defective mutants of the nematode caenorhabditis elegans. Genetics 88, 285-303. 

Ward, S., Argon, Y., and Nelson, G.A. (1981). Sperm morphogenesis in wild-type and 
fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol 91, 26-44. 
 
Washburn, M.P., Wolters, D., and Yates, J.R., 3rd (2001). Large-scale analysis of the 
yeast proteome by multidimensional protein identification technology. Nat Biotechnol 
19, 242-247. 



175

 
Washington, N.L., and Ward, S. (2006). FER-1 regulates Ca2+ -mediated membrane 
fusion during C. elegans spermatogenesis. J Cell Sci 119, 2552-2562. 
 
Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Minami, N., 
and Imai, H. (2006). Identification and characterization of two novel classes of small 
RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline 
small RNAs in testes. Genes Dev 20, 1732-1743. 

Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., 
Chiba, H., Kohara, Y., Kono, T., Nakano, T., et al. (2008). Endogenous siRNAs from 
naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539-543. 

Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2013a). A multitasking Argonaute: 
exploring the many facets of C. elegans CSR-1. Chromosome Res 21, 573-586. 

Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2013b). Protection of germline gene 
expression by the C. elegans Argonaute CSR-1. Dev Cell 27, 664-671. 

Weick, E.M., Sarkies, P., Silva, N., Chen, R.A., Moss, S.M., Cording, A.C., Ahringer, J., 
Martinez-Perez, E., and Miska, E.A. (2014). PRDE-1 is a nuclear factor essential for the 
biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 28, 783-796. 

Welker, N.C., Pavelec, D.M., Nix, D.A., Duchaine, T.F., Kennedy, S., and Bass, B.L. 
(2010). Dicer's helicase domain is required for accumulation of some, but not all, C. 
elegans endogenous siRNAs. Rna 16, 893-903. 

Werdelin, L., and Nilsonne, A. (1999). The evolution of the scrotum and testicular 
descent in mammals: a phylogenetic view. J Theor Biol 196, 61-72. 

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the 
heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. 
Cell 75, 855-862. 

Woese, C.R. (1967). The genetic code; the molecular basis for genetic expression (New 
York,, Harper & Row). 

Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd (2001). An automated 
multidimensional protein identification technology for shotgun proteomics. Anal Chem 
73, 5683-5690. 
 
Wu, J.C., Go, A.C., Samson, M., Cintra, T., Mirsoian, S., Wu, T.F., Jow, M.M., 
Routman, E.J., and Chu, D.S. (2012). Sperm development and motility are regulated by 
PP1 phosphatases in Caenorhabditis elegans. Genetics 190, 143-157 



176

Wu, E., Thivierge, C., Flamand, M., Mathonnet, G., Vashisht, A.A., Wohlschlegel, J., 
Fabian, M.R., Sonenberg, N., and Duchaine, T.F. (2010). Pervasive and cooperative 
deadenylation of 3'UTRs by embryonic microRNA families. Mol Cell 40, 558-570. 

Wykes, S.M., and Krawetz, S.A. (2003). The structural organization of sperm chromatin. 
J Biol Chem 278, 29471-29477. 

Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 
mRNA. Science 304, 594-596. 

Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear 
export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016. 

Yigit, E., Batista, P.J., Bei, Y., Pang, K.M., Chen, C.C., Tolia, N.H., Joshua-Tor, L., 
Mitani, S., Simard, M.J., and Mello, C.C. (2006). Analysis of the C. elegans Argonaute 
family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747-757. 

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded 
RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 
101, 25-33. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 



177

 

 
 
 
 


	Small RNAs and Argonautes Provide a Paternal Epigenetic Memory of Germline Gene Expression to Promote Thermotolerant Male Fertility: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page

	Signature Page

	Acknowledgements

	Abstract

	Table of Contents

	List of Figures

	List of Tables

	Preface

	Chapter I - The C. elegans Germline: A Small RNA World
	Chapter II - The Argonautes ALG-3 and ALG-4 are Required for Spermatogenesis-Specific 26G-RNAS and Thermotolerant Sperm in C. elegans
	Chapter III - Argonautes Promote Transcription in the Male Germline and Provide a Paternal Memory of Germline Gene Expression in C. elegans
	Chapter IV - Sperm Development, Temperature, and Small RNAs
	Bibliography


