19 research outputs found

    The latest research progress on P53 and tumor metabolism

    Get PDF
    P53 is a key factor encoded by the TP53, and it prevents cells from becoming cancerous and has a wide range of powerful functions. p53 is found to play an important role in inducing DNA repair, apoptosis, cell cycle arrest and senescence, and the loss of these functions does not abrogate P53’s tumor suppressive activity. Metabolism is the basis of life, and metabolic abnormalities can lead to a variety of diseases, including tumors, and is one of the main drivers of cancer progression. It has recently been discovered that P53 plays a key role in regulating metabolism. P53-mediated regulation of cell metabolism is a fundamental mechanism controlling cancer occurrence and development and contributes to its tumor suppressive activity. Here, this article reviewed the relationship between P53 and glucose, fatty acid, amino acid and nucleotide metabolism, and discussed the complex mechanism and the latest research progress of P53 in the metabolic regulation in tumor development

    Implementation-Friendly and Energy-Efficient Symbol-by-Symbol Detection Scheme for IEEE 802.15.4 O-QPSK Receivers

    Get PDF
    In this article, the noncoherent detection scheme for the receiver in wireless sensor nodes is discussed. That is, an implementation-friendly and energy-efficient symbol-by-symbol detection scheme for IEEE 802.15.4 offset-quadrature phase shift keying (O-QPSK) receivers is investigated under both pure additive white Gaussian noise (AWGN) channel and fading channel. Specifically, the residual carrier frequency offset (CFO) of the chip sample is estimated and compensated with the aid of the preamble; then, the standard noncoherent detection scheme with perfectly known CFO is directly configured. The corresponding simulation results show that only 4 preamble symbols is sufficient for accurate CFO estimation. Compared with the conventional noncoherent detector, the average running time per data packet of our enhanced detector is only 0.17 times of the former; meanwhile, at the packet error rate of 1 × 10-3, our enhanced detector can obtain 2.2 dB gains in the (32, 4) direct sequence spread spectrum system. A more reasonable trade-off between complexity and reliability is thus achieved for energy-saving and maximum service life in wireless sensor networks (WSNs)

    Training Large-Vocabulary Neural Language Models by Private Federated Learning for Resource-Constrained Devices

    Full text link
    Federated Learning (FL) is a technique to train models using data distributed across devices. Differential Privacy (DP) provides a formal privacy guarantee for sensitive data. Our goal is to train a large neural network language model (NNLM) on compute-constrained devices while preserving privacy using FL and DP. However, the DP-noise introduced to the model increases as the model size grows, which often prevents convergence. We propose Partial Embedding Updates (PEU), a novel technique to decrease noise by decreasing payload size. Furthermore, we adopt Low Rank Adaptation (LoRA) and Noise Contrastive Estimation (NCE) to reduce the memory demands of large models on compute-constrained devices. This combination of techniques makes it possible to train large-vocabulary language models while preserving accuracy and privacy

    Water vapor estimation based on 1-year data of E-band millimeter wave link in North China

    Get PDF
    Abstract. The amount of water vapor in the atmosphere is very small, but its content varies greatly in different humidity areas. The change in water vapor will affect the transmission of microwave link signals, and most of the water vapor is concentrated in the lower layer, so the water vapor density can be measured by the change in the near-ground microwave link transmission signal. This study collected 1-year data of the E-band millimeter wave link in Hebei, China, and used a model based on the International Telecommunication Union Radiocommunication Sector (ITU-R) to estimate the water vapor density. An improved method of extracting the water-vapor-induced attenuation value is also introduced. It has a higher time resolution, and the estimation error is lower than the previous method. In addition, this paper conducts the seasonal analysis of water vapor inversion for the first time. The monthly and seasonal evaluation index results show a high correlation between the retrieved water vapor density and the actual water vapor density value measured by the local weather station. The correlation value for the whole year is up to 0.95, the root mean square error is as low as 0.35 g m−3, and the average relative error is as low as 5.00 %. Compared with European Center for Medium-Range Weather Forecast (ECMWF) reanalysis, the correlation of the daily water vapor density estimation of the link has increased by 0.17, the root mean square error has been reduced by 3.14 g m−3, and the mean relative error has been reduced by 34.00 %. This research shows that millimeter wave backhaul link provides high-precision data for the measurement of water vapor density and has a positive effect on future weather forecast research. </jats:p

    Research on Rainfall Monitoring Based on E-Band Millimeter Wave Link in East China

    Get PDF
    Accurate rainfall observation data with high temporal and spatial resolution are essential for national disaster prevention and mitigation as well as climate response decisions. This paper introduces a field experiment using an E-band millimeter-wave link to obtain rainfall rate information in Nanjing city, which is situated in the east of China. The link is 3 km long and operates at 71 and 81 GHz. We first distinguish between the wet and the dry periods, and then determine the classification threshold for calculating attenuation baseline in real time. We correct the influence of the wet antenna attenuation and finally calculate the rainfall rate through the power law relationship between the rainfall rate and the rain-induced attenuation. The experimental results show that the correlation between the rainfall rate retrieved from the 71 GHz link and the rainfall rate measured by the raindrop spectrometer is up to 0.9. The correlation at 81 GHz is up to 0.91. The mean relative errors are all below 5%. By comparing with the rainfall rate measured by the laser raindrop spectrometer set up at the experimental site, we verified the reliability and accuracy of monitoring rainfall using the E-band millimeter-wave link.</jats:p

    Aperture Sharing Metasurface-Based Wide-Beam Antenna for Energy Harvesting

    Get PDF
    Since the available ambient power level is usually quite low for radio frequency energy harvesting, it is very desirable for an antenna to have both a high gain and a wide beamwidth. Usually, they cannot be achieved simultaneously. In order to overcome this limitation, a multi-port antenna using a nonuniform metasurface (MTS) is presented. In this MTS-based antenna, three modes with complementary radiation patterns are excited through one middle and two side aperture-coupled feeding ports. The first mode is the fundamental TM10 mode with in-phase current distributions on the MTS. It has a broadside directional radiation pattern with a high gain. The second and third modes are symmetrical to each other at a high mode. They have opposite current distributions on two sides of the MTS. These two modes have a directional radiation pattern with a tilted angle. These three modes share the same aperture but are excited by three different feeds. Each feed is connected to a rectifier. By combining direct current (DC) output to a single load, an antenna with a wide beam and a high gain can be effectively achieved, although each mode has the usual limitation of gain and beamwidth. The key advantage of this proposed rectenna is that the unit cells on the MTS layer can be reused to excite different MTS modes with different radiation patterns simultaneously. Thus, a wide beamwidth can be achieved. Three realized beams are oriented at −35°, 0°, and + 35° respectively. By combining the DC output from the three modes, the proposed rectenna has effectively achieved a beamwidth of 114° with a gain ranging from 8 to 9.8 dBi. The RF-to-DC conversion efficiency of the rectifiers is 3%-67% at 2.45 GHz when the input power ranges from −35 to 0 dBm. The proposed MTS antenna with an overall size of λ0 × λ0 × 0.03 λ0 can achieve 12% fractional bandwidth

    Link adaptive random beamforming MIMO-OFDMA for future generation communication systems

    No full text
    This thesis investigates the potential performance benefits achievable in a future generation communication system (e.g. 4G) using a MIMO OFDM physical layer when it is enhanced with various reduced feedback cross layer design techniques.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Water Vapor Density Retrieval Studies Using Commercial Millimeter-Wave Links at 38 GHz and E-Band

    No full text
    We study the performance of water vapor monitoring using commercial millimeter-wave backhaul links from the fifth-generation cellular networks and smart cities. A 38 GHz link and an E-band link located in Gothenburg, Sweden, are used for analysis. One end of these two backhaul links is installed at the same site. The water vapor density (WVD) over a one-month period from 13 June 2017 to 13 July 2017 is calculated based on the data from these microwave links with different frequencies. The meteorological data used for analysis is from a weather station installed at the site where the microwave links are installed, as well as from a nearby weather station operated by Swedish Institute of Meteorology and Hydrology (SMHI). A pre-processing step is applied to the raw link attenuation measurement for improving the estimation accuracy. We retrieved water vapor density value from two millimeter-wave links, and it is in good agreement with the water vapor density calculated by weather stations. The source of interference, such as misalignment, humidity source below the link, location, and altitude of weather stations, can contribute to estimation errors and needs to be carefully considered when using microwave link to retrieve water vapor density

    A Dual-Frequency Cloud Radar for Observations of Precipitation and Cloud in Tibet: Description and Preliminary Measurements

    No full text
    A new dual-frequency Doppler polarimetric cloud radar (DDCR), working at 35-GHz (Ka-band radar, wavelength: 8.6 mm) and 94-GHz (W-band radar, wavelength: 3.2 mm) frequencies, has been in operation at Yangbajing Observatory on the Tibetan Plateau (China) for more than a year at the time of writing. Calculations and field observations show that the DDCR has a high detection sensitivity of −39.2 dBZ at 10 km and −33 dBZ at 10 km for the 94-GHz radar and 35-GHz radar, respectively. The radar reflectivity measured by the two radars illustrates different characteristics for different types of cloud: for precipitation, the attenuation caused by liquid cloud droplets is obviously more serious for the 94-GHz radar than the 35-GHz radar (the difference reaches 40 dB in some cases), and the 94-GHz radar lost signals due to serious attenuation by heavy rainfall; while for clouds dominated by ice crystals where the attenuation significantly weakens, the 94-GHz radar shows better detection ability than the 35-GHz radar. Observations in the Tibetan region show that the 35-GHz radar is prone to missing cloud near the edge, such as the cloud-top portion, resulting in underestimation of the cloud-top height (CTH). Statistical analysis based on one year of observations shows that the mean CTH measured by the 94-GHz radar in the Tibetan region is approximately 600 m higher than that measured by the 35-GHz radar. The analysis in this paper shows that the DDCR, with its dual-frequency design, provides more valuable information than simpler configurations, and will therefore play an important role in improving our understanding of clouds and precipitation in the Tibetan region

    Simple and Robust Log-Likelihood Ratio Calculation of Coded MPSK Signals in Wireless Sensor Networks for Healthcare

    No full text
    The simple and robust log-likelihood ratio (LLR) computation of coded Multiple Phase Shift Keying (MPSK) signals in Wireless Sensor Networks (WSNs) is considered under both phase noncoherent and Rayleigh fading channels for healthcare applications. We first simplify the optimal LLR for phase noncoherent channel, the estimation of the instantaneous channel state information (CSI) for both the fading amplitude and the additive white Gaussian noise (AWGN) is successfully avoided, and the complexity-intensive process for zero-order Bessel function of the first kind is also perfectly eliminated. Furthermore, we also develop the simplified LLR under Rayleigh fading channel. Correspondingly, the variance estimation for both AWGN and the statistical characteristic of the fading amplitude is no longer required, and the complicated process for implementation of the exponential function is also successfully avoided. Compared to the calculation of optimal LLR with full complexity, the proposed method is implementation-friendly, which is practically desired for energy-limited WSNs. The simulations are developed in the context of low-density parity-check (LDPC) codes, and the corresponding results show that the detection performance is extremely close to that of the full-complexity LLR metrics. That is, the performance degradation is efficiently prevented, whereas complexity reduction is also successfully achieved
    corecore