48 research outputs found

    Graphite-anchored lithium vanadium oxide as anode of lithium ion battery

    Get PDF
    Graphite-anchored lithium vanadium oxide (Li1.1V0.9O2) has been synthesized via a “one-pot” in situ method. The effects of the synthesis conditions, such as the ratio of reaction components and calcination temperature, on the electrochemical performance are systematically investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), galvanostatic discharge/charge tests and differential scanning calorimetry (DSC). Compared with the simple mixture of graphite and lithium vanadium oxide, the graphite-anchored lithium vanadium oxide delivers an enhanced reversible capacity, rate capability and cyclic stability. It also shows better thermal stability.Web of Scienc

    Exploring the application and challenges of fNIRS technology in early detection of Parkinson’s disease

    Get PDF
    BackgroundParkinson’s disease (PD) is a prevalent neurodegenerative disorder that significantly benefits from early diagnosis for effective disease management and intervention. Despite advancements in medical technology, there remains a critical gap in the early and non-invasive detection of PD. Current diagnostic methods are often invasive, expensive, or late in identifying the disease, leading to missed opportunities for early intervention.ObjectiveThe goal of this study is to explore the efficiency and accuracy of combining fNIRS technology with machine learning algorithms in diagnosing early-stage PD patients and to evaluate the feasibility of this approach in clinical practice.MethodsUsing an ETG-4000 type near-infrared brain function imaging instrument, data was collected from 120 PD patients and 60 healthy controls. This cross-sectional study employed a multi-channel mode to monitor cerebral blood oxygen changes. The collected data were processed using a general linear model and β values were extracted. Subsequently, four types of machine learning models were developed for analysis: Support vector machine (SVM), K-nearest neighbors (K-NN), random forest (RF), and logistic regression (LR). Additionally, SHapley Additive exPlanations (SHAP) technology was applied to enhance model interpretability.ResultsThe SVM model demonstrated higher accuracy in differentiating between PD patients and control group (accuracy of 85%, f1 score of 0.85, and an area under the ROC curve of 0.95). SHAP analysis identified the four most contributory channels (CH) as CH01, CH04, CH05, and CH08.ConclusionThe model based on the SVM algorithm exhibited good diagnostic performance in the early detection of PD patients. Future early diagnosis of PD should focus on the Frontopolar Cortex (FPC) region

    Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study

    Get PDF
    Objective: Hearing loss, one main risk factor of tinnitus and hyperacusis, is believed to involve significant central functional abnormalities. The recruitment of the auditory cortex in non-auditory sensory and higher-order cognitive processing has been demonstrated in the hearing-deprived brain. The dorsolateral prefrontal cortex (dlPFC), which has dense anatomical connections with the auditory pathway, is known to play a crucial role in multi-sensory integration, auditory regulation, and cognitive processing. This study aimed to verify the role of the dlPFC in the cross-modal reorganization and cognitive participation of the auditory cortex in long-term sensorineural hearing loss (SNHL) by combining functional and structural measurements.Methods: Thirty five patients with long-term bilateral SNHL and 35 matched healthy controls underwent structural imaging, resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and neuropsychological assessments. Ten SNHL patients were with subjective tinnitus.Results: No differences in gray matter volume, spontaneous neural activity, or diffusion characteristics in the dlPFC were found between the SNHL and control groups. The functional connectivity (FC) between the dlPFC and the auditory cortex and visual areas, such as the cuneus, fusiform, lingual cortex, and calcarine sulcus was increased in patients with SNHL. ANOVA and post hoc tests revealed similar FC alterations in the SNHL patients with and without tinnitus when compared with the normal hearing controls, and SNHL patients with and without tinnitus showed no difference in the dlPFC FC. The FC in the auditory cortex was associated with the symbol digit modality test (SDMT) scores in the SNHL patients, which reflect attentional function, processing speed, and visual working memory. Hearing-related FC with the dlPFC was found in the lingual cortex. A tract-based spatial statistics (TBSS) analysis revealed decreased fractional anisotropy (FA) values, mainly in the temporal inferior fronto-occipital fasciculus (IFOF), which showed remarkable negative correlations with the mean hearing thresholds in SNHL.Conclusion: Higher functional coupling between the dlPFC and auditory and visual areas, accompanied by decreased FA along the IFOF connecting the frontal cortex and the occipito-temporal area, might mediate cross-modal plasticity via top-down regulation and facilitate the involvement of the auditory cortex in higher-order cognitive processing following long-term SNHL

    A case report of membrane induction combined with RIA technique for the repair of distal humerus segmentary bone defect

    Get PDF
    Bone nonunion and bone defect are common postoperative complications in clinic. Membrane induction or Ilizarov technique is often used to repair bone defect. Autologous bone is often used for bone defect repair and reconstruction, and the anterior superior iliac spine, posterior superior iliac spine or fibula bone is used as the donor area for bone extraction, but there are problems of donor area complications. In recent years, the development of bone marrow aspiration (RIA) has provided a new alternative way for the source of autogenous bone. We report a 48-year-old female patient with a comminuted supracondylar intercondylar fracture of the left humerus due to a car accident. After 8 months of emergency debridement and suture with Kirschner wire internal fixation, the fracture was found to be unhealed with extensive bone defects. We used membrane induction combined with RIA technology to repair and reconstruct the patients, and found good osteogenesis through late follow-up. In theory, membrane induction technique can realize the reconstruction of large segmental bone defects, but the scope of repair is often limited by the lack of autologous bone source. The emergence and development of RIA technology provides us with a new autologous bone donor area for bone repair and reconstruction surgery. It can provide a large amount of high-quality cancellar bone mud through minimally invasive means. Meanwhile, it can reduce patients’ pain, infection, fracture, aesthetics and other problems caused by iliac bone extraction, and shorten patients’ bed time. Maximize the preservation of the patient’s autologous bone source. For the first time in the world, we reported the combination of membrane induction technology and RIA technology in the treatment of segmental bone defects, providing a new idea for the treatment of bone defects

    Research on upgrading of coal mine safety monitoring and control system and its key technologies

    No full text
    Main problems about application of existing coal mine safety monitoring and control system were pointed out, such as unstable sensor performance and power supply, poor anti-interference performance of transmission lines, different system technology level, incomplete standards and so on. Technology requirements of Technology schemes of upgrading of coal mine safety monitoring and control system(exposure draft) were analyzed about system functions, performances and communication interfaces. A design scheme of new coal mine safety monitoring and control system was proposed according to requirements of Technology schemes of upgrading of coal mine safety monitoring and control system(exposure draft). Key technologies of the new system were introduced in details including new digital sensing, multi-system data fusion, distributed/local event/remote control, electromagnetic compatibility, fault diagnosis, plug and play, resuming from broken point, etc

    Present situation and development countermeasures of coal mine safety monitoring and control system intelligentizatio

    No full text
    Present situation of coal mine safety monitoring and control system intelligentization was analyzed, such as difficult pseudo-data identification, complex installation and use of the system, simple function of fault diagnosis, difficult measurement of conformity between installation and use and standard requirements, single alarm disposal mechanism. Development countermeasures of coal mine safety monitoring and control system intelligentization were proposed according to requirements of Technology Schemes of Upgrading of Coal Mine Safety Monitoring and Control System, which included software pseudo-data identification, equipment self-identification installation, system self-diagnosis, grading alarm disposal mechanism, prediction and pre-warning of gas emission and fire

    Aptamer-Functionalized Iron-Based Metal–Organic Frameworks (MOFs) for Synergistic Cascade Cancer Chemotherapy and Chemodynamic Therapy

    No full text
    Hypoxia-activated prodrugs (HAPs) with selective toxicity in tumor hypoxic microenvironments are a new strategy for tumor treatment with fewer side effects. Nonetheless, the deficiency of tumor tissue enrichment and tumor hypoxia greatly affect the therapeutic effect of HAPs. Herein, we design an active targeted drug delivery system driven by AS1411 aptamer to improve the tumor tissue enrichment of HAPs. The drug delivery system, called TPZ@Apt-MOF (TA-MOF), uses iron-based MOF as a carrier, surface-modified nucleolin aptamer AS1411, and the internal loaded hypoxia activation prodrug TPZ. Compared with naked MOF, the AS1411-modified MOF showed a better tumor targeting effect both in vitro and in vivo. MOF is driven by GSH to degrade within the tumor, producing Fe2+, and releasing the cargo. This process leads to a high consumption of the tumor protective agent GSH. Then, the Fenton reaction mediated by Fe2+ not only consumes the intracellular oxygen but also increases the intracellular production of highly toxic superoxide anions. This enhances the toxicity and therapeutic effect of TPZ. This study provides a new therapeutic strategy for cancer treatment
    corecore