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An urban spatial cluster (USC) describes one or more geographic agglomerations and the linkages among

cities. USCs are conventionally delineated based on predefined administrative boundaries of cities, without

considering the dynamic and evolving nature of the spatial extent of USCs. This study uses Defense

Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light (NTL) satellite

images to quantitatively detect and characterize the evolution of USCs. We propose a dynamic minimum

spanning tree (DMST) and a subgraph partitioning method to identify the evolving USCs over time, which

considers both the spatial proximity of urban built-up areas and their affiliations with USCs at the previous

snapshot. China is selected as a case study for its rapid urbanization process and the cluster-based economic

development strategy. Four DMSTs are generated for China using the urban built-up areas extracted from

DMSP/OLS NTL satellite images collected in 2000, 2004, 2008, and 2012. Each DMST is partitioned into

various subtrees and the urban built-up areas connected by the same subtree are identified as a potential

USC. By inspecting the evolution of USCs over time, three different types of USCs are obtained, including

newly emerging, single-core, and multicore clusters. Using the rank-size distribution, we find that large-sized

USCs have greater development than medium- and small-sized USCs. A clear directionality and

heterogeneity are observed in the expansions of the ten largest USCs. Our study provides further insight for

the understanding of urban system and its spatial structures, and assists policymakers in their planning

practices at national and regional scales. Key Words: dynamic minimum spanning tree, nighttime light data,
urban dynamics, urban spatial clusters.

A
s a global phenomenon, urbanization leads to

the physical expansion of urban areas, rapid

population growth, and the increasing coales-

cence of cities (Bettencourt and West 2010;

American Association for the Advancement of

Science [AAAS] 2016; X. Li et al. 2017). An urban

cluster is formed as a result of the rapid urbanization

of multiple large cities that are in close proximity

(Hall and Pain 2006; Lang and Knox 2009; F. Wu

2016). Urban clusters play important roles in facilitat-

ing the regional economy through the well-connected

infrastructures and the resource reallocation between

large and small cities. The definition of urban cluster

has evolved over the past century (Geddes 1915;

Fawcett 1932; Gottmann 1957; B. Yu et al. 2014;

Fang and Yu 2017; Peng et al. 2020), but has not

yet reached a consensus among scholars. Various

terms have been used to denote a vast metropolitan

area, including conurbation (Geddes 1915; Fawcett

1932), megalopolis (Gottmann 1957), urban agglom-

eration (Fang and Yu 2017), and urban spatial clus-

ter (USC; B. Yu et al. 2014). Despite the variations
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in terminology, the existence of an extensive and

multicity urban agglomeration has been well recog-

nized (Scott 2001; Taubenb€ock et al. 2014; Harrison

and Hoyler 2015). We adopt the terminology of

USC in this study given its emphasis on the geo-

graphic linkage between urban areas and their spatial

structures (B. Yu et al. 2014).
The previous relevant studies use socioeconomic indi-

cators as the key measures of USCs (Gottmann 1957;

Hagler 2009; Q. Zhang et al. 2012; Yao et al. 2016).

For instance, Hagler (2009) identified the megaregions

in the United States using five county-level factors: pop-

ulation density, population growth rate, employment

growth rate, population density change, and whether a

county is part of a Core Based Statistical Area (CBSA).

These studies rely heavily on census data that are col-

lected based on geographic units defined for administra-

tive purposes. The spatial extents of these administrative

units are changing over time. The differences in defini-

tion of USC and the change in the spatial extent of

the administrative unit often lead to biases and obscurity

when examining the spatiotemporal evolution of urban

areas, as well as when comparing urban development in

different countries and regions (Rozenfeld et al. 2008;

Small et al. 2011). On the other hand, previous studies

on the dynamic flow of urban phenomena, such as

goods, services, materials, people, money, and informa-

tion, are typically based on the fixed spatial extent of

USCs (De Goei et al. 2010; Y. Li and Phelps 2017).

The fact that the spatial extent of USCs is dynamic

and evolving over time is often overlooked. Thus, a

nonsubjective delineation of the USCs and their evolu-

tion over time without the intervention of administra-

tive division is crucial for understanding the real spatial

extent and pattern of USCs.
Spatial proximity is an essential feature of the

USCs. Different statistical methods (based on socioeco-

nomic factors) have been used to determine the spatial

proximity among cities that belong to the same USC

(Portnov and Wellar 2004; Portnov 2006). Spatial

interaction methods, such as gravity models (Huff and

Lutz 1995; Liang 2009; Peng et al. 2020) and Voronoi

diagrams (Mu and Wang 2006) are used to detect the

USCs. In Europe, a megacity region is usually defined

in terms of contiguous functional urban regions (Hall

and Pain 2006). Hence, geographic proximity can

serve as a proxy variable for identifying localities that

are likely to belong to a USC.

Nighttime light (NTL) images have been proven

useful in providing spatiotemporal representations of

various human activities on the Earth’s surface, such

as urban expansion (Small, Pozzi, and Elvidge 2005;

T. Ma et al. 2012; Zhou et al. 2018), population

density (Elvidge et al. 1997; Sutton et al. 2001;

Doll and Pachauri 2010), socioeconomic indicators

(Doll, Muller, and Morley 2006; Forbes 2013; Yang

et al. 2019), electric power consumption (Elvidge

et al. 1997; Shi et al. 2014; Shi et al. 2018),

and CO2 emissions (Doll, Muller, and Elvidge 2000;

Shi et al. 2016). Recent studies also demonstrate

that Defense Meteorological Satellite Program/

Operational Linescan System (DMSP/OLS) NTL

data can be highly effective in facilitating the spatio-

temporal analysis of urban expansion in USCs (T.

Ma et al. 2012; Taubenb€ock et al. 2014; Q. Zhang

and Su 2016; Lu et al. 2018). The long-term evolu-

tion of USCs, however, has not been examined from

the perspective of USC’s spatial structure at a very

short time interval (e.g., four years in this study). B.

Yu et al. (2014) proposed an object-based method

for detecting and characterizing USCs using DMSP/

OLS NTL data, which identifies the spatial pattern

of USCs by simultaneously considering spatial prox-

imity between urban patches. This object-based

method is highly sensitive to the emergence of new

urban patches, which complicates the use of this

method for exploring the evolution of USCs over

time. Florida, Gulden, and Mellander (2008) pro-

duced a consistent set of megaregions for the globe

by thresholding the pixel values of DMSP/OLS NTL

data. Peng et al. (2020) also used DMSP/OLS NTL

time-series images to identify the boundaries of

USCs in China from 2000 to 2012 by thresholding

the NTL images to obtain urban areas. Their results

are largely influenced by the selection of optimal

threshold values, however.

This study presents a quantitative time-series view

of the USCs in a nonsubjective way. We expanded

the minimum spanning tree (MST) to the dynamic

minimum spanning tree (DMST) to analyze the spa-

tiotemporal evolution of USCs. Each discrete urban

built-up area derived from DMSP/OLS NTL images

is represented as an urban object. The DMST was

used to represent the spatial proximity relationship

between urban objects over time. A partitioning

method was developed based on the Gestalt theory

(Zahn 1971) to split the DMST into various sub-

trees. The urban objects connected by the same sub-

tree form a potential USC. The dynamics of the

USC over time were then detected through
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examining the affiliation of its urban objects with

the USCs identified at the previous snapshot. The

DMST and the partitioning method can overcome

the instability of a single MST in several time-series

situations to identify the spatiotemporal dynamics of

the USCs without the intervention of administrative

divisions. We selected China as a case study for its

rapid urbanization process and cluster-based eco-

nomic development strategy (Bai, Chen, and Shi

2012; Wang et al. 2015). The dynamic identification

of USCs can allow policymakers to develop relevant

policies according to the actual development of

USCs. The driving forces to the evolution of USCs

in China, as well as the implications, can also help

urban researchers to rethink the mechanism behind

the evolving USCs in urban systems.

Study Area and Data Sets

Study Area

China has experienced rapid urbanization since

1979 and the adoption of its opening-up policy

(Chan 1992; Gaughan et al. 2016). Following a

series of market reforms since 1979, local govern-

ments became responsible for the direct implementa-

tion of policies regarding local economies, leading to

intercity competition and uncoordinated regional

development (F. Wu 2016; Jia et al. 2020). The cen-

tral government aims to maintain its leadership since

the 1994 fiscal reform in regional development, and

encourages provincial and local governments to for-

mulate metropolitan strategies that focus on regional

collaboration to restrict intercity competition and

promote economic development (Vogel et al. 2010;

Ye 2014). The national development strategies, such

as the National New-type Urbanization Plan

(2014–2020) and the Two-horizontal Three-vertical

Urbanization Initiative, are implemented to develop

the USCs as key carriers for regional economic

development (National Development and Reform

Commission 2014; Preen 2018). Our study area cov-

ers mainland China, Hong Kong, and Macao, but

excludes Taiwan due to the nature of its island state.

Data

The Version 4 DMSP/OLS NTL time-series

images from 2000 to 2012 were obtained from the

Earth Observation Group of the Colorado School of

Mines Web site (see https://eogdata.mines.edu/dmsp/

downloadV4composites.html, accessed February

2020). These images were captured by different

DMSP satellites (F14, F15, F16, and F18) on an

annual basis. Each image is a composite of the NTL

detected by a satellite over the entire year. The digi-

tal number (DN) value of each pixel can vary from

0 to 63, and represents the observed mean NTL

intensity on Earth’s surface (Elvidge et al. 1997;

Imhoff et al. 1997; Sutton et al. 2001). The NTL

images collected in different years have low continu-

ity and comparability due to the lack of on-orbit

radiance calibration (Small, Pozzi, and Elvidge 2005;

Z. Liu et al. 2012; Shi et al. 2018), which makes it

impossible to compare directly the multiyear NTL

images. Previous studies have attempted to reduce the

discrepancies between multiyear images (Elvidge et al.

2014; Shi et al. 2016). Among these, the invariant

region method is commonly used to calibrate multiyear

DMSP/OLS data (Wei et al. 2014). We calibrated the

multiyear DMSP/OLS images from 2000 to 2012 using

Sicily, Italy, as an invariant region following the

method proposed by Elvidge et al. (2014). Figure 1A

shows the processed NTL image of China in 2012.
We used the urban built-up area data generated

by Z. Chen et al. (2019) from DMSP/OLS NTL

time-series data and Moderate Resolution Imaging

Spectroradiometer (MODIS) data using a region-

growing support vector machine classifier and a bidi-

rectional Markov random field model. The urban

built-up data has a spatial resolution of 30 arc-sec-

onds (approximately 1 km). Figure 1B shows the

urban built-up areas in China from 2000 to 2012

with an interval of four years. The Chinese adminis-

trative boundary was obtained from the National

Geomatics Center of China (see http://bzdt.ch.mnr.

gov.cn/, accessed January 2020) and was used to

extract the urban built-up area and the DMSP/OLS

NTL time-series images in China. The core cities iden-

tified in Zhen, Wang, and Wei (2015) were used as a

seed to identify the USCs. All the spatial data were

projected to the Albers conical equal area projection.

Method

The methodological framework (Figure 2) consists

of two main components. The first is USC identifi-

cation. The urban built-up areas extracted from

NTL data comprise a series of urban patches. Each

urban patch consists of spatially connected urban

58 Wang et al.
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Figure 1. Input data: (A) Nighttime light image of China in 2012; (B) urban expansion in China derived from the DMSP/OLS

nighttime light and MODIS data in 2000, 2004, 2008, and 2012. Note: DMSP/OLS¼Defense Meteorological Satellite Program/

Operational Linescan System; MODIS¼Moderate Resolution Imaging Spectroradiometer; DN¼ digital number.
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pixels and was identified as an urban object. An MST

was built based on the urban objects in each year and

was then expanded to a DMST. A partitioning

method was applied to divide the DMST into USCs

based on the spatial proximity between urban objects

and their affiliations with USCs at the previous snap-

shot. The second component was spatiotemporal pat-

tern analysis. The spatial and temporal patterns of

USCs were analyzed using the rank-size distribution

and the standard deviational ellipse (SDE) methods.

Identification of USCs

Generating a DMST to Represent Proximal

Relations between Urban Objects. A recursive

connected-region labeling algorithm (H. Liu and

Jezek 2004; B. Yu et al. 2014) was employed to mark

out the urban objects based on the spatial 4-connec-

tivity of the foreground urban pixels extracted from

NTL data. Data preprocessing, including a filling

operation, a closing operation, and small spurious

objects exclusion, were applied to the urban objects

to smooth their boundaries and reduce the data

noise. The MST in graph theory (AssunÇ~ao et al.

2006; B. Yu et al. 2014; Caruso, Hilal, and Thomas

2017; B. Wu et al. 2018) is a spanning tree with a

minimum weight among all possible spanning trees

(see more details on the explanation of graph theory

and MST in the Supplemental Material). In this

study, the MST was built for all urban objects in

each year to represent the spatial proximity of all

urban objects in an entire region. As illustrated in

Figure 3A, each node in the MST is an urban object;

each edge links one urban object with its nearest

urban object and the weight of the edge refers to the

minimum distance between the boundaries of the two

nearest urban objects. The MST is represented by:

MST ¼ fN, E, Wg (1)

where N represents a set of urban objects, E repre-

sents the edges that connect urban objects, and W
represents the weights of the edges.

Figure 2. Methodological framework for examining the evolution of urban spatial clusters from DMSP/OLS nighttime light (NTL)

images. Note: DMSP/OLS¼Defense Meteorological Satellite Program/Operational Linescan System; MODIS¼Moderate Resolution

Imaging Spectroradiometer.
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We first generated four MSTs from 2000 to 2012

at four-year intervals (from T1 to T4). Although the

MSTs can reflect the spatial relations between urban

objects in each snapshot, they cannot record the

variations of urban objects’ relationships over time.

Moreover, the emergence of new urban objects over

time can also change the local structure of the

MST. Hence, to overcome this problem, we

expanded the basic MST to the DMST by an addi-

tional set (C) with a timestamp. C was defined as a

set of identified USCs (C1, C2, ::: , Cr) consisting

of urban objects (the identification of USCs is dis-

cussed in the next section). By expanding the MST

to the DMST, we could track the relationship varia-

tions of urban objects over time. The DMST at time

Ti consists of the basic MST with nodes (NTi), edges

(ETi), and weight (WTi), as well as the identified

USCs (CTi�1) at time Ti-1. Figure 3B is an example

of the basic MST at time Ti.

The DMST at time Ti is represented by:

DMST
Ti ¼ fNTi , ETi , WTi , CTi�1g (2)

where NTi is a set of nodes (NTi
1 , NTi

2 , ::: , NTi
j ) at

time Ti, which can be described as:

NTi ¼ fNTi
1 , NTi

2 , ::: , NTi
j g (3)

ETi is the edges (ETi
1;2, ETi

2;3, ::: , ETi
j�1;j) that con-

nect urban objects at time Ti:

ETi ¼ fETi
1;2, ETi

2;3, ::: , ETi
j�1;jg (4)

WTi is the weights (WTi
1;2, WTi

2;3, ::: , WTi
j�1;j) of

the edges at time Ti. The set WTi has the form of:

WTi ¼ fWTi
1;2, WTi

2;3, ::: , WTi
j�1;jg (5)

CTi�1 represents the identified USCs

(CTi�1

1 , CTi�1

2 , ::: , CTi�1
q ) consisting of urban

objects at time Ti-1 (the identification of USCs is
discussed in the next section). For the DMST in the

Figure 3. Minimum spanning tree at (A) time Ti-1 and (B) time Ti. Partitioning results at (C) time Ti-1 and (D) time Ti.

Evolution of Urban Spatial Clusters in China 61



first time T1, CT0 is an empty set. The set CTi�1 has

the form of:

CTi�1 ¼ fCTi�1

1 , CTi�1

2 , ::: , CTi�1
q g (6)

Identifying USCs by Partitioning the DMST.

USCs were identified by partitioning the DMST

into different subtrees following Gestalt theory.

Based on the MST, Zahn (1971) developed a parti-

tioning method for detecting Gestalt clusters that

are compatible with a human’s visual perception of

the two-dimensional point sets. B. Yu et al. (2014)

adopted a similar strategy as in Zahn (1971) to parti-

tion the MST and confirmed that this method is

suitable for generating USCs in China. Following

the method by B. Yu et al. (2014), the urban objects

connected by the same subtree represent a potential

USC. An edge was cut off from the DMST when

the weight is larger than a given threshold. Three

types of indicators were defined to cut off the edge

(ETi
m;n), namely, the distance (WTi

m;n) between the

boundaries of two urban objects (NTi
m and NTi

n ), the

average distances (W
Ti

m and W
Ti

n ) of its nearby edges

for each urban object (NTi
m and NTi

n ) in the edge

ETi
m;n, and the standard deviations (STD

Ti
m and

STD
Ti
n ) of the distances of its nearby edges for each

urban object (NTi
m and NTi

n ) in ETi
m;n (see more details

on the indicators for partitioning the DMST and the

uncertainty and sensitivity analysis of the thresholds

for indicators in the Supplemental Material). After

partitioning the DMST at time T1, the urban objects

connected by the same subtree were considered as

one USC. Previous studies show that a USC usually

consists of more than one core city together with

peripheral areas connecting to the core cities

(Kabisch and Haase 2011; Yao et al. 2016).

Following these studies, we used the locations of the

core cities proposed by Zhen, Wang, and Wei

(2015) in China and excluded those USCs whose

urban built-up areas do not encompass more than

one of these core cities. Next, we excluded the small

spurious USCs with fewer than five urban objects.
After obtaining the USCs at time T1, we parti-

tioned the DMST at time T2, time T3, and time T4.

We first determined whether the edges are consis-

tent or not using the same three types of indicators

at time T1 in the Supplemental Material. Second,

we detected the dynamics of the USC over time

through examining the affiliation of its urban objects

with the USCs identified at the previous snapshot.

Because the partitioning method proposed by B. Yu

et al. (2014) is sensitive to the emergence of new

urban objects when used over an extended period,

we proposed a partitioning method for the DMST to

overcome this problem. Our partitioning method

was based on the principle that once an urban

object becomes part of a USC, it is unlikely to be

separated from the USC in later years. For urban

object Nj at time Ti (N
Ti
j ), we analyzed the status of

Nj at time Ti�1 (NTi�1

j ). If NTi�1

j belongs to the USC

CTi�1
p , NTi

j was considered as a part of the USC CTi
p :

Meanwhile, the edges connecting the urban objects

in the USC CTi
p were reset to be consistent at time

Ti. For instance, Figure 3C shows the identified

USCs at time Ti-1 (CTi�1

1 and CTi�1

2 ). The USC C1

at time Ti-1 (CTi�1

1 ) contains four urban objects

(NTi�1

1 , NTi�1

2 , NTi�1

3 , NTi�1

4 ). At the next time Ti

(Figure 3D), the urban objects (NTi
1 , NTi

2 , NTi
3 , NTi

4 )

are belonging to the USC CTi
1 : Finally, we excluded

those USCs if their urban built-up areas do not

encompass more than one core city, as well as the

small spurious USCs with fewer than five urban

objects except the USCs that have been identified

at the previous snapshot, using the same method at

time T1. The minimum convex hull (MCH) polygon

was used to delineate the relatively regular shape of

each USC (B. Yu et al. 2014).

Spatiotemporal Analysis of USCs

The rank-size distribution method was employed

to evaluate the rank-size relationship of USCs in

China. The size of each USC was measured with the

total urban built-up area within that USC. After a

logarithmic transformation, the rank-size relationship

can be presented as a linear function shown as

(Guerin-Pace 1995; Fragkias and Seto 2009; Small

et al. 2011; Small et al. 2018):

lgPi ¼ lgP1－qlgRi (7)

where Pi is the urban built-up area of a USC that

ranks in the ith position among all USCs, with P1
being the largest USC, P2 the second largest USC,

and so on. Ri is the rank of the ith USC, and q is

the slope. The distribution of q indicates the degree

to which the relationship may conform to a scaling

law between the size and number of USCs (Fragkias

and Seto 2009; Shi et al. 2018). When q equals 1, it

indicates that the size of the top-ranked USC is

twice as large as that of the second-ranked USC,

three times as large as that of the third-ranked USC,
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and so on (Zipf 1949; Fragkias and Seto 2009; Jiang

and Jia 2011; Small and Sousa 2016). A rank-size

distribution with a slope less than one indicates that

the study area is dominated by a large number of

small-sized USCs, whereas a distribution with a slope

greater than one indicates that the study area is

dominated by a small number of large-sized USCs

(Fragkias and Seto 2009; Shi et al. 2018).

The SDE is an effective tool for measuring the spa-

tial dispersion of a set of geographical events (Lefever

1926; Shi et al. 2018; Xu et al. 2018). An SDE was

generated for each USC and used to indicate the

direction of each USC’s spatial expansion. Based on

the boundaries and the NTL pixel values of urban

objects within each USC, four parameters were calcu-

lated for each SDE—the ellipse center, the azimuth,

and the standard deviations along the long and short

axes (see more details in the Supplemental Material).

The ellipse center is the centroid of all urban objects

within a USC, weighted by the NTL pixel value.

The long axis, short axis, and azimuth represent the

dispersion and directional trends of the USC (Lefever

1926; Shi et al. 2018; Xu et al. 2018). The ratio of

the long to short axis reflects the degree of clustering

or dispersion of the USCs. A large ratio with a value

greater than one indicates that the USC has an

apparent directional expansion. A ratio equal to one,

however, indicates no directional characteristic in the

USCs (Xu et al. 2018).

Results

USCs in China from 2000 to 2012

An MST was constructed for 2000, 2004, 2008,

and 2012, respectively (Figure 4). These MSTs have

more edges in eastern and southern China than in

northwestern China. By expanding the basic MSTs

to the DMSTs and partitioning the DMSTs, we can

see that the subtree at the Yangtze River Delta

(YRD) region (Figure 1B) consists of ninety-five

consistent edges and ninety-six urban objects in

2012 (Figure 4D).
The number and size of USCs in China changed

substantially from 2000 to 2012 (Figure 5). In total,

we detected twenty, thirty-three, thirty-one, and

thirty-one USCs in 2000, 2004, 2008, and 2012,

respectively (Figure 5). Three types of USC evolu-

tion, namely, the single-core cluster (Figure 6A), the

newly emerging cluster (Figure 6B), and the

multicore cluster (Figure 6C), are identified in this

study. Overall, the development of large-sized USCs

is more prominent than the small and medium-sized

USCs (Figure 7). The slope (q) of the rank-size dis-

tribution decreased from 1.16 in 2000 to 1.08 in

2004 and increased to 1.21 in 2012. The SDEs of

the ten typical USCs are illustrated in Figure 8. The

ellipse center of the YRD (Figure 8A) moved north-

west by 5.80 km from 2008 to 2012. The ellipse cen-

ter of the Pearl River Delta (PRD; Figure 8E) shifted

northwest by 2.80 km from 2000 to 2012. The ratio

of the long to short axis reduced from 1.62 in 2000

to 1.55 in 2012, indicating that the expansion of the

PRD is relatively stable with a slight decreased direc-

tional tendency.

Discussion

An Innovative Approach to Identifying and
Monitoring the Evolving USCs

Previous studies have demonstrated that NTL

images have the potential of identifying USCs

through visual interpretation or by applying an

object-based algorithm or a threshold method to the

images (Lo 2002; Florida, Gulden, and Mellander

2008; B. Yu et al. 2014). Few studies, however, focus

on the spatial evolution of USCs over time. In this

study, we developed a graph-based method to detect

and characterize the spatiotemporal patterns of

USCs using the DMSP/OLS NTL satellite images.

Compared with the USCs detected by Peng et al.

(2020), who also used the DMSP/OLS NTL data

from 2000 to 2012, the approach in this study not

only reflects the spatiotemporal development of the

USCs, but also the spatial structures of the USCs.

Our method is more robust and effective for

understanding the evolving USCs than the approach

developed by B. Yu et al. (2014) and is not influ-

enced by the emergence of new urban objects from a

time-series perspective. As a comparison, we applied

the method developed by B. Yu et al. (2014) to

identify the USCs in China at four snapshots T1

(2000), T2 (2004), T3 (2008), and T4 (2012). A

comparison of the identification of the Liaodong

Peninsula (LDP) cluster based on the method pro-

posed by B. Yu et al. (2014) and our method can be

seen in the Supplemental Material.

Furthermore, our method is also more suitable for

identifying USCs than that using the administrative
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Figure 4. The generated and partitioned dynamic minimum spanning trees: (A) 2000, (B) 2004, (C) 2008, and (D) 2012.
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Figure 4. Continued.
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Figure 5. Urban spatial clusters, their minimum convex hulls, sizes, and core cities: (A) 2000, (B) 2004, (C) 2008, and (D) 2012.

Names and abbreviations of the top ten urban spatial clusters in 2012: 1. Yangtze River Delta (YRD); 2. Beijing-Tianjin-Hebei (BTH);

3. Pearl River Delta (PRD); 4. Central Plain (CPL); 5. Taiyuan Basin (TYB); 6. Eastern Fujian (EFJ); 7. Liaodong Peninsula (LDP); 8.

Lianyungang (LYG); 9. Harbin-Changchun-Jilin (HCJ); 10. Guanzhong Plain (GZP).
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Figure 5. Continued.
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boundaries, due to the following features of our

method. First, our method does not need specific

socioeconomic and demographic data, which are

typically derived based on the city’s predefined

boundary (e.g., its administrative boundary). The

quality of these data across cities is inconsistent

(Niedomysl et al. 2017; S. Ma and Long 2020), and

explanations and interpretations of data could pro-

vide inconsistent outcomes (Rozenfeld et al. 2008).

Second, our approach can be used to determine the

location and time of the emergence of a USC, and

to show how multiple USCs can emerge into one

integrated USC. Understanding these processes in a

timely manner is critical for cross-city management

and coordination; such an understanding is difficult

to obtain based on the administrative boundaries.

For instance, the middle reaches of the Yangtze

River agglomeration (MYRA) proposed by the cen-

tral government in 2015 was meant to promote

central China’s economic development, covering

three megacity groups, including Wuhan,

Nanchang, and Changsha, and their corresponding

metropolitan areas (China State Council 2015).

We identified MYRA as three newly emerging

USCs, namely the Wuhan USC, the Nanchang

USC, and the Changsha USC, during the twelve-

year period (Figure 5) and confirmed that these had

not reached an entire USC.

Driving Forces for the USC Evolutions

In China, USCs have undergone a significant

transformation since 1979 due to the combined

effects of policies, demographic, macro- and micro-

economic conditions, globalization, industrialization,

and geographical characteristics (Lin 2001; Ye 2014;

F. Wu 2016; G. Li, Sun, and Fang 2018).

Urban development policies at the national or

regional government levels are important driving

forces for the formation of USCs (Jonas 2012; Fang,

Li, and Wang 2016; F. Wu 2016; W. Yu and Zhou

2018), especially for the early stage of a USC (Kuang

et al. 2014). Because the central government empha-

sizes improving the leading function of large cities and

developing the medium- and small-sized cities in the

Tenth Five-Year Plan (2001–2005; W. Yu and Zhou

2018), most newly emerging USCs are all formed dur-

ing this period (Figure 5). At the regional government

level, the PRD is a typical example, under the juris-

diction of one provincial government (Guangdong).

The government-led regional policies in the PRD can

be more effective than in other areas, leading to a

good synergy among cities within the PRD and a rapid

urban expansion in the early stages of its development

(Xu and Yeh 2005; Ye 2014). Our results show that

the PRD was the most stable USC from 2000 to 2012

in China (Figure 5 and Figure 8E).

Figure 6. Simplified illustration of three evolution types of urban spatial cluster (USC): (A) single-core cluster, (B) newly emerging

cluster, and (C) multicore cluster at time T1, time T2, time T3, and time T4. The single-core cluster is expanded around the existing

USC over the twelve-year period from 2000 to 2012. The newly emerging cluster is the USC that emerged over the twelve-year period

from 2000 to 2012. The multicore cluster is formed after the coalescence of multiple adjacent USCs that existed in earlier years. Each

USC is represented by polygons in a different gray color.
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Economic incentives, such as urban industrial

relocation and transformation and foreign direct

investment, also play an important role in driving

the USC development process (Seto and Kaufmann

2003; Fragkias and Seto 2009; Ye 2014; F. Wu

2016). For instance, in 2005, Shougang Group, a

giant iron and steel company in China, began to

relocate its factory and more than 60,000 employees

from Beijing (the core city of the Beijing-Tianjin-

Hebei [BTH] cluster) to Tangshan. This relocation

resulted in strong connectivity between the two cit-

ies and the development of BTH from 2004 to 2008

(Figure 5). Similarly, in 2008, Guangzhou, the core

city of the PRD, began to move more than 300

plants to Foshan, which resulted in a slight shift of

the ellipse center of the PRD to the northwest from

2008 to 2012 (Figure 8E). In addition to industrial

relocation, industrial transformation can also have

an impact on the development of USCs. For

instance, Harbin and Changchun are two core cities

of the Harbin-Changchun-Jilin (HCJ) cluster (Figure

5). Each city has a different dominant urban func-

tion. Harbin has experienced the industrial transfor-

mation from heavy industry to tertiary industry,

whereas Changchun is dominated by secondary

industry. After connecting these two cities vas eco-

nomic connections, the HCJ became an integrated

USC in 2012 (Figure 5 and Figure 8D).

Figure 7. The rank-size distribution of urban spatial clusters in China.
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Furthermore, the transportation infrastructure
can also drive the expansion of a USC (X. Li
et al. 2016; Long, Zheng, and Song 2018; Yue
et al. 2019; H. Zhang et al. 2019). For instance,

Hefei originally had a weak connection with the
cities in the YRD and did not fully receive the
contributions from the spillover effects of

Shanghai or Nanjing (two core cities in the YRD;
J. Chen et al. 2020). The construction of the first
high-speed railway from Hefei to Nanjing was

started in 2005 and completed in 2008. The spatial
redistribution of economic activities and popula-
tion was improved with the benefit of the high-

speed railway (X. Li et al. 2016; Shao, Tian, and
Yang 2017). According to our results, the ellipse
center of the YRD moved toward Anhui Province
(Hefei as the capital city) from 2008 to 2012

(Figure 8A). These results are in agreement with
the YRD Regional Plan and the results from Lu
et al. (2018) and Yao et al. (2016).

Policy Implications for China

The evolution of USCs should be considered to

formulate the industrial transformation policies for

the heavy-industry-led USCs. Like other USCs led

by heavy industry development, such as the Detroit-

Warren-Dearborn metropolitan region in the United

States, the developments of those USCs including

HCJ and LDP in China are also affected by the

industrial transformation in recent years. Under the

policy of industrial transformation in northeast

China (China State Council 2007; P. Zhang 2008),

the HCJ consisted of two separate USCs from 2000

to 2008 and became an integrated USC in 2012.

The LDP cluster, however, became the seventh-larg-

est USC in 2012 from the fourth-largest USC in

2000 (Figures 5A and 5D). This indicates that the

national industrial transformation policy had a differ-

ent impact on the development of HCJ and LDP

clusters. Our results show that the HCJ is a

Figure 8. The standard deviational ellipses (SDEs) for ten typical urban spatial clusters from 2000 to 2012. Multicore clusters: (A)

Yangtze River Delta (YRD), (B) Beijing-Tianjin-Hebei (BTH), (C) Eastern Fujian (EFJ), and (D) Harbin-Changchun-Jilin (HCJ).

Single-core clusters: (E) Pearl River Delta (PRD), (F) Central Plain (CPL), (G) Taiyuan Basin (TYB), and (H) Liaodong Peninsula

(LDP). Newly emerging clusters: (I) Lianyungang (LYG), and (J) Guanzhong Plain (GZP).
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multicore cluster, whereas the LDP is a single-core

cluster. In the future, the spatial structures and types

of USCs, along with economic strength and natural

environment, should be deeply analyzed to help poli-

cymakers formulate a more effective regional plan.
Regional coordination should be considered to

formulate the USC policies, as we found the spatial

heterogeneity of USCs in China, which echoes its

population distribution pattern as illustrated by the

Hu Huanyong Line (Hu 1935). The Hu Huanyong

Line (Figure 1B) divides mainland China into two

parts: The eastern part accounts for approximately

36 percent of China’s land area and contains 96 per-

cent of its population, whereas the western part con-

tains only 4 percent of China’s population but

accounts for approximately 64 percent of its land

area. Regional development plans, such as the China

Western Development Plan in 2000 (China State

Council 2000) and the Rise of Central China Plan

in 2006 (China State Council 2006), had impacts

on the development of medium- and small-sized

USCs, as the slope (q) of the rank-size distribution

decreased from 1.16 in 2000 to 1.08 in 2004 (Figure

7A). The rapid development of medium- and small-

sized USCs from 2000 to 2004 was mostly observed

in western and central China. The large USCs

developed faster than the small and medium-sized

USCs from 2004 to 2012, however (Figure 7), indi-

cating that these plans might not be sufficient to

support the sustainable development of USCs in

western and central China.

Implications for Urban Research

This study presents a novel USC detection

approach and applies it successfully to identify the

dynamic evolution of USCs in China. It contributes

to urban research in multiple dimensions. First, this

research demonstrates the value of using nontradi-

tional data sources (e.g., remote sensing) and “data

mining” capabilities to dynamically identify func-

tion- and association-based USCs and structures,

which can uncover spatial regimes or other forms of

spatial heterogeneity in the urban system. This

method uses information extracted from the NTL

remote sensing data as the input, which is easier to

obtain as compared to other approaches that need

data to measure urban spatial interactions, such as

population, information, and material flows (Dewar

and Epstein 2007; Nelson and Rae 2016). In

addition, this method can also help to identify the

functional linkages or development association

between cities that might not always be easily

detectable by other methods. As such, it can help

researchers in countries or regions where data per-

taining to functional linkages are not read-

ily available.

Furthermore, the spatial extents of the detected

USCs are not constrained by any administrative

boundary, which helps us better understand the spa-

tial evolution of USCs. Previous research has docu-

mented the existence of the USCs in many

countries, such as the megaregions in the United

States (Hagler 2009), the megacity regions in

Europe (Hall and Pain 2006), and the urban agglom-

erations in China (Fang and Yu 2017). These USCs

were regionally specific due to the lack of global def-

inition and comparable data (Florida, Gulden, and

Mellander 2008). Owing to the long time-series and

global coverage of NTL data, our approach contrib-

utes to addressing the ongoing challenges of data

heterogeneity in other regions as well as varying

administrative units, which have long hampered

comparative studies.

Conclusion

This article presents a graph-based method using

a DMST algorithm and a partitioning approach to

detect the evolution of USCs. We used DMSP/OLS

NTL time-series images and urban built-up data

extracted from the DMSP/OLS NTL images as input

data. The emergence of new urban objects over time

might influence the identification of USCs when

dividing the MSTs into subtrees. Therefore, we

expanded the MST to the DMST and improved the

partitioning method by taking into account the spa-

tial proximity between urban objects and their affili-

ations with USCs at the previous snapshot. We also

employed the rank-size distribution approach and

SDE analysis to assess the spatiotemporal patterns of

USCs and their spatial directional expansions over

time. Our methods allow researchers to explore and

visualize USCs in other regions and provide an

empirical framework for further inquiry into the

identification of USCs.
We included all cities in China (except those in

Taiwan) to detect the evolution of USCs over the

twelve-year period from 2000 to 2012. In total,

twenty, thirty-three, thirty-one, and thirty-one USCs
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were detected in 2000, 2004, 2008, and 2012, respec-

tively. The USCs in the eastern coastal or southern

regions appear to develop faster than those in the

western region. The USCs can be classified into three

types: the newly emerging cluster, the single-core

cluster, and the multicore cluster. The large-sized

USCs have greater development than medium- and

small-sized USCs over the twelve-year period from

2000 to 2012. The top ten USCs exhibit a directional

expansion pattern at the regional scale. The develop-

ment policies at national and regional government

levels, economic incentives, and transportation infra-

structures have collectively played important roles in

shaping and governing the development of China’s

USCs. The policy implications from industrial trans-

formation and regional coordination can provide feed-

back to central or local governments to help them

justify the development levels of USCs, and can also

assist policymakers in conducting national and

regional planning practices. The identified USCs also

offer valuable insight for urban researchers to rethink

the dynamic nature of the spatial structure of USCs

in urban system.

Supplemental Material

Supplemental data for this article can be accessed

online at http://dx.doi.org/10.1080/24694452.2021.

1914538. The supplemental material consists of five

sections. Section A is an explanation of graph the-

ory and MST. Section B provides the indicators for

partitioning the DMST based on Gestalt theory.

Section C includes the uncertainty and sensitivity

analysis of the thresholds for indicators. The calcula-

tion of SDE is shown in Section D. Section E gives

the comparison of the identification of the LDP

cluster based on the method proposed by B. Yu et al.

(2014) and our method.
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