3,488 research outputs found

    Optimal competitiveness for the Rectilinear Steiner Arborescence problem

    Full text link
    We present optimal online algorithms for two related known problems involving Steiner Arborescence, improving both the lower and the upper bounds. One of them is the well studied continuous problem of the {\em Rectilinear Steiner Arborescence} (RSARSA). We improve the lower bound and the upper bound on the competitive ratio for RSARSA from O(logN)O(\log N) and Ω(logN)\Omega(\sqrt{\log N}) to Θ(logNloglogN)\Theta(\frac{\log N}{\log \log N}), where NN is the number of Steiner points. This separates the competitive ratios of RSARSA and the Symetric-RSARSA, two problems for which the bounds of Berman and Coulston is STOC 1997 were identical. The second problem is one of the Multimedia Content Distribution problems presented by Papadimitriou et al. in several papers and Charikar et al. SODA 1998. It can be viewed as the discrete counterparts (or a network counterpart) of RSARSA. For this second problem we present tight bounds also in terms of the network size, in addition to presenting tight bounds in terms of the number of Steiner points (the latter are similar to those we derived for RSARSA)

    A robust sequential hypothesis testing method for brake squeal localisation

    Get PDF
    This contribution deals with the in situ detection and localisation of brake squeal in an automobile. As brake squeal is emitted from regions known a priori, i.e., near the wheels, the localisation is treated as a hypothesis testing problem. Distributed microphone arrays, situated under the automobile, are used to capture the directional properties of the sound field generated by a squealing brake. The spatial characteristics of the sampled sound field is then used to formulate the hypothesis tests. However, in contrast to standard hypothesis testing approaches of this kind, the propagation environment is complex and time-varying. Coupled with inaccuracies in the knowledge of the sensor and source positions as well as sensor gain mismatches, modelling the sound field is difficult and standard approaches fail in this case. A previously proposed approach implicitly tried to account for such incomplete system knowledge and was based on ad hoc likelihood formulations. The current paper builds upon this approach and proposes a second approach, based on more solid theoretical foundations, that can systematically account for the model uncertainties. Results from tests in a real setting show that the proposed approach is more consistent than the prior state-of-the-art. In both approaches, the tasks of detection and localisation are decoupled for complexity reasons. The localisation (hypothesis testing) is subject to a prior detection of brake squeal and identification of the squeal frequencies. The approaches used for the detection and identification of squeal frequencies are also presented. The paper, further, briefly addresses some practical issues related to array design and placement. (C) 2019 Author(s)

    Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction

    Full text link
    For conventional imaging, shaking of the imaging system or the target leads to the degradation of imaging resolution. In this work, the influence of the target's shaking to fourier-transform ghost diffraction (FGD) is investigated. The analytical results, which are backed up by numerical simulation and experiments, demonstrate that the quiver of target has no effect on the resolution of FGD, thus the target's imaging with high spatial resolution can be always achieved by phase-retrieval method from the FGD patterns. This approach can be applied in high-precision imaging systems, to overcome the influence of the system's shaking to imaging resolution.Comment: 4 pages, 4 figure

    Research on hot extrusion forming of 7075 aluminum alloy wheel profile

    Get PDF
    Design the wheel mold according to the cross-sectional view of the lightweight aluminum alloy wheel profile, determine the length of its working belt and use HyperXtrude software to simulate it, verify the rationality of the working belt design, analyze the flow velocity and temperature of the mold outlet, and determine the 7075 aluminum alloy The alloy wheel profile is most reasonable to be produced on a 10 MN extruder. Finally, the optimized working belt length is used for production. The quality of hot extrusion profile is qualified, which proves the accuracy of the simulation

    A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse.

    Full text link
    This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na2CO3/0.9 mM Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF hybrid system could effectively remove pollutants (∼98% COD, ∼99% PO43-P, ∼93% NH4+-N, > 99% suspended solids) from wastewater. In short, this developed system can be considered a breakthrough technology as it successfully minimizes membrane fouling by shear force, and achieves high water quality for reuse by two membrane- barriers

    Determining 11^{--} Heavy Hybrid Masses via QCD Sum Rules

    Full text link
    The masses of 11^{--} charmonium and bottomonium hybrids are evaluated in terms of QCD sum rules. We find that the ground state hybrid in charm sector lies in mHc=4.124.79m_{H_c}=4.12\sim 4.79 GeV, while in bottom sector the hybrid may situated in mHb=10.2411.15m_{H_b} = 10.24\sim 11.15 GeV. Since the numerical result on charmonium hybrid mass is not compatible with the charmonium spectra, including structures newly observed in experiment, we tempt to conclude that such a hybrid does not purely exist, but rather as an admixture with other states, like glueball and regular quarkonium, in experimental observation. However, our result on bottomonium hybrid coincide with the "exotic structure" recently observed at BELLE.Comment: 15 pages, 5 figures, version to appear in J.Phys.

    Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum antiferromagnet Cs2_2CuCl4x_{4-x}Brx_x

    Full text link
    We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs2_2CuCl4x_{4-x}Brx_x (0 \leq x \leq 4), which include the two known end-member compounds Cs2_2CuCl4_4 and Cs2_2CuBr4_4, classified as quasi-two-dimensional quantum antiferromagnets with different degrees of magnetic frustration. By comparative measurements of the magnetic susceptibility χ\chi(TT) on as many as eighteen different Br concentrations, we found that the inplane and out-of-plane magnetic correlations, probed by the position and height of a maximum in the magnetic susceptibility, respectively, do not show a smooth variation with x. Instead three distinct concentration regimes can be identified, which are separated by critical concentrations xc1_{c1} = 1 and xc2_{c2} = 2. This unusual magnetic behavior can be explained by considering the structural peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-selective replacement of Cl- by Br- ions. Consequently, the critical concentrations xc1_{c1} (xc2_{c2}) mark particularly interesting systems, where one (two) halidesublattice positions are fully occupied.Comment: 15 pages, 4 figure
    corecore