61 research outputs found

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    00Introduction

    Get PDF

    01ArchAndTech

    Get PDF

    Analysis, Dimensioning and Robust Control of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains

    Get PDF
    In this chapter some results related to Shunt Active Filters (SAFs) and obtained by the authors and some coauthors are reported. SAFs are complex power electronics equipments adopted to compensate for cur-rent harmonic pollution in electric mains, due to nonlinear loads. By using a proper "floating" capacitor as energy reservoir, the SAF purpose is to inject in the line grid currents canceling the polluting har-monics. Control algorithms play a key role for such devices and, in general, in many power electronics applications. Moreover, systems theory is crucial, since it is the mathematical tool that enables a deep understanding of the involved dynamics of such systems, allowing a correct dimensioning, beside an effective control. As a matter of facts, current injection objective can be straightforwardly formulated as an output tracking control problem. In this fashion, the structural and insidious marginally-stable internal/zero dynamics of SAFs can be immediately highlighted and characterized in terms of sizing and control issues. For what concerns the control design strictly, time-scale separation among output and internal dynamics can be effectively exploited to split the control design in different stages that can be later aggregated, by using singular perturbation analysis. In addition, for robust asymptotic output tracking the Internal Model Principle is adopted.Comment: Paper presented at the AUTOMATICA_IT 2011 conference, Pisa, Italy, September 201

    01ArchAndTech_BW

    Get PDF

    09LogicControl_GA

    No full text

    06LogicControl1_BW

    No full text

    Codesys_Examples_And_Exercies

    No full text

    11TemperatureAndCurrentSensors

    No full text

    05PLC

    No full text
    • …
    corecore