Ingegneria e Tecnologie dei Sistemi di Controllo T Control Systems Technologies

> Architectures and Technologies in Control Systems

Ing. Christian Conficoni (prof. Andrea Tilli) DEI - Alma Mater Studiorum Università di Bologna E-mail: <u>christian.conficoni@unibo.it</u> https://www.unibo.it/sitoweb/christian.conficoni3

### Objectives

- Introduction to technological architectures in control systems
  - Model/Scheme to be used as "general guideline"
- > Define basic components and introduce: main features and problems
- > To define (and understand) a general technological architecture, we need general functional architecture before
  - First "functions", then "implementations"

Some consideration on mapping from "functions space" to "technological space"

#### Contents

# Definition of a general functional scheme for control systems

- Quite general (even if qualitative)
- It helps in defining technological scheme

#### > Definition of a general technological scheme

• Quite general (even if qualitative)

#### > Basics on Components

- Adopted technologies
- Potential problems to remember

# Guidelines to map a functional scheme on a technological scheme

# GENERAL FUNCTIONAL SCHEME OF A CONTROL SYSTEM

Ing. Christian Conficoni, DEI, University of Bologna

#### **General functional scheme**



Focus on "controllers" level:

Time-dependent system control ("classic") and logic control

# General Functional Scheme MIMO Schemes

- > In general functional control schemes are MIMO
  - "Classic" time-dependent-systems controllers can be MIMO
    - State-space approach
    - Cascaded SISO structures
  - Logic controllers are usually MIMO
    - Many logic I/O
    - Finite-states automata
  - Anyway, according to general organization depicted in Automation Pyramids overall controller is usually MIMO
    - "Controllers" level is a sum of subcontrollers (SISO or MIMO)
    - The results is MIMO
      - Sometimes hundreds of I/O



**General Functional Scheme** 

# Typical relationships between logic controllers and time-dependent-systems controllers

- > Usually, Logic Controllers trigger Time-dependent-system Controllers
  - Give consensus to start working
  - Change references
- > Usually, logic controllers are hierarchically higher than time-driven-systems controllers

**General Functional Scheme** 

# Typical relationships between logic controllers and time-driven-systems controllers

> Summing up:

- IN AUTOMATION, IN GENERAL, "CONTROLLERS" HAVE TO MANAGE DIFFERENT WORKING PHASES, NOT ONLY REGULATE SOME TIME-DRIVEN-OUTPUT VARIABLES
  - The overall controller will be a sum of "state-machines" (possibly very complex) which will give commands to activate-deactivate or change something in time-driven-systems controllers.

#### **General Functinal Scheme**

# Typical relationships between logic controllers and time-driven-systems controllers

> Indicating time-driven-system controllers as R(z):



#### **General Functional Scheme**

#### Typical relationships between logic controllers and timedriven-systems controllers

Actually hierarchical relation among R(z) and logic controllers is not so "pure and clean"...



#### **General Functional Scheme**

#### Typical relationships between logic controllers and timedriven-systems controllers

- Logic Controllers and R(z) Controllers: "non-pure" hierarchy
  - Logic Controllers could act and sense directly to/from the plant
  - "Non-pure" hierarchies among controllers of the same type
    - R(z): Cascade controllers
    - Logic Controllers: see previous slide
    - USUALLY NO Ctrl R(z) commands Logic Controllers.
  - Sometimes, R(z) and logic controllers are considered at the same level and hierarchy is treated as "horizontal collaboration"
    - But it is better to consider "non-pure" hierarchy and use "horizontal collaboration" for controllers actually on the same level (really cooperating controllers, not so common in industrial automation, considered in other systems)

# General Functional Scheme Additional consideration

- > At higher levels of automation pyramid non-pure hierarchies are not so common
- > Anyway at higher levels no direct interactions with plant
  - They interact with controllers level to give commands and get measurements
  - (With Industrial Ethernet we could .... Complex!)
- > Remember: focus of the course on "controllers level"

#### **General Functional Scheme**

### General Model/Architecture to represent the "controllers level"



Blocks: representing logic controllers or time-dependent-system controllers

- Hierarchical constraints: logic ctrl cannot be commanded by a time-driven-system ctrl
  - a ctrl cannot be commanded by more than one ctrl

External communication:

- n: set point or other from higher AP level, humans better to higher controllers only
  - with lower controllers just monitoring, possibly

#### **General Functional Scheme**

### General Model/Architecture to represent the "controllers level"



Every functional project of a complex control system (logic ctrl + R(z)/R(s))

must (should) comply with the just-defined general functional architecture

# GENERAL TECHNOLOGICAL SCHEME FOR A CONTROL SYSTEM

Ing. Christian Conficoni, DEI, University of Bologna

# General Technological Scheme Introduction

- Similarly to functional scheme: definition of a general technological scheme
- For a given project, on this general technological basis, the actual technological solution will be defined starting from the specific functional scheme
- Remark: the choice of the specific components should be driven by the functional/behavioural requirements
  - Remember: some additional troubles can come from implementation

E.g.: communication delays not considered at functional levels

# General Technological Scheme Model/Architecture



#### **General Technological Scheme**

### **General Technological Model Architecture: Components**

### Computing Units:

- Different technologies
- Remote location
- > Communication among computing units
  - Depending on comp.units techn. (tipically electronics)
  - Different technologies in the same project
  - Can mimic the functional architecture

#### Sensors and Interfacing

- Field measures
- "Intelligent" sensors
  - Configurability
  - Integration in computing units communication systems (remove dedicated channels)

#### **General Technological Scheme**

# General Technological Model Architecture: Components (cont'd)

#### > Actuators and interfacing

- Actions on the field
- "Power" devices
- "Intelligent" actuators
  - Local control given by the manufacturer (e.g.: electric drive)
  - Configurability
  - Integration in computing units communication systems (remove dedicated channels)

#### > External communication

- HMI
- Other levels of the automation pyramid
- Integrate in communication among computing units

# COMPONENTS OF THE GENERAL TECHNOLOGICAL SCHEME

# Components of general technological scheme Computing Units

# **Technologies:**

- Programmable Digital Electronics + Informatics
  - Different kind: PC, microcontrollers, microprocessors, DSP, etc.
    - Performance, characteristics
  - **Dominant** (as already anticipated implicitly)
    - But "not to be used in any case"
- In the past controllers were "technologically homogeneous" with the plant
  - E.g.: Watt's speed regulator
  - No clear separation between controller and plant (functional concepts as control and feedback were not clear)

# Components of the general technological scheme

### **Computing units**

### **Tecnology:**

> Watt's speed regulator



Components of the general technological scheme

## **Computing units**

# **Technologies:**

- Advantages of Informatics digital electronics for complex control systems:
  - COMPUTING POWER / RELIABILITY
  - FLEXIBILITY
  - INTERACTION WITH USERS
  - EXTERNAL COMMUNICATION
- Problems of Informatics Digital Electronics for complex control systems:
  - SAMPLING
  - QUANTIZATION

(see "Digital Control" in "Automatic Control 2" and "Controlli Automatici T2")

# Components of the general technological scheme Computing Units

## **Technologies:**

- Informatics Digital Electronics: Electronics and Informatics "customized" for control application
  - Time constraints
  - Solution:
    - "Ad hoc" electronics
    - Real-Time informatics

(problem/solutions for real-time programming will be considered later on)

# Components of the general technological scheme Computing Units

### **Technologies:**

- Warning: for simple systems and without frequent reconfiguration, controllers which are homogeneous with the plant are still adopted (and also the most reasonable)
  - E.g.: pressure regulators for fuel injection systems in IC engines
  - Level, pressure or flow regulators adopted in hydraulic applications.

# Components of the general technological scheme Computing units

**Technologies:** 

- > Other solutions: Analog Elettronics e Electromechanics
- Computing units based on <u>analog elettronics</u> or <u>electromechanics (switches and relays)</u>, largely adopted in the past, nowadays are declining.
  - Former "classic" continuous-time ctrl → analog electronics
  - Former logic controllers → elettromechanics
    - Remark: "switches and relays" allows to reproduce all the combinatorial and sequential logics

Considered later on...

Components of the general technological scheme Computing units

# **Technologies:**

- Computing units based on <u>analog electronics</u> or <u>electromechanics (switches and relays)</u> are practically "endangered"
- Relevant exceptions:

1) time-dependent-system controller where cost/sampling time trade-off is critical → analog electronics

- or non-programmable digital electronics or PLD/FPGA
- E.g.: current controllers for electrovalves

Components of the general technological scheme Computing units

# **Technologies:**

- Computing units based on <u>analog electronics</u> or <u>electromechanics (switches and ralays)</u> are practically "endangered"
- Relevant exceptions:

2) Simple logic controllers with no flexibility reqs. → electromechanics

- often legacy from past solutions
- e.g.: relay rack for lift control (old...)

Components of the general technological scheme Computing Units Communication System

- For Electronic computing units
  - Mainly digital
- > Characteristics:
  - Digital (rarely analog, legacy of past solutions)
  - Point-to-point (often mimics the functional scheme)
    - Specific sizing of the channel according to functional traffic
    - Sometimes custom solution
  - Bus/Net: Standard (FieldBuses, variants of Ethernet)
    - Simplified cabling



# Components of the general technological scheme Computing Units Communication System

- Most promising: Standard Bus/Net
  - Reusability, independence on functional architecture
  - Simple expansion/modularity/interoperability
    - Problem: standardization at application level...
- > Problems for control:
  - delay
  - determinism (collisions)

depending on number of nodes and their traffic→ pay attention in reusing



# Components of the general technological scheme Sensors and Interfacing

Sensors: transfer information from the plant physical domain to the computing unit domain

 Typically "final domain" is electric (electronics computing units)

Interfacing

- Common sensors: analog output
- Common comp. unit: digital input
- Sensors far from Computing Unit



Transmission

# Components of the general technological scheme Sensors and Interfacing

#### > Interfacing architectures:



- Usually: sensor signal (current or voltage), level adaptation and/or converted (voltage/current) and transmitted
  - No "particular" techniques (modulation etc.)
  - Low frequency signal: no propagation phenomena
- > Point-to-point transmission (seldom more receivers in parallel)
- Pros: Simple; Cons: EMC; Cabling with many sensors

# Components of the general technological scheme Sensors and Interfacing

#### > Interfacing architectures:



> Pros:

EMC robustness; Flexibilty; Bus or Net (simpler cabling, integration with computing unit communication system)

> Cons:

"Complexity" on field (supply, logics, hostile environment); Communication delay; Determinism! (NOT TRIVIAL)

# Components of the general technological scheme Actuators and Interfacing

- > Actuators: convert control commands in actions on physical plant (domain and power)
  - Different physical domains
  - "Signal" and "Power"

#### > Interfacing:

- Dual w.r.t. sensors
- Similar solutions... but something more:

Often "local intelligence" in actuator → complete feedback controller

- E.g.: Electric Drives (later on...)
  - A curiosity: Digital Ctrl, Digital drive, but analog interface! (legacy of past solutions)

Components of the general technological scheme

# **External Communication**

- Again referred to digital computing units
- > DIGITAL STANDARD BUS OR NET
  - Application:
    - HMI
    - Communication with higher Automation Pyramid(supervision/managment)
  - NO hard real-time constraints
  - Standard
    - Ethernet-TCP/IP
  - Avoid relevant computational load for computing <u>units</u>
    - Control is the main objective (time constraints)!
    - Decoupling

# GUIDE-LINES TO MAP A SPECIFIC FUNCTIONAL SOLUTION IN A TECHNOLOGICAL IMPLEMENTATION

Ing. Christian Conficoni, DEI, University of Bologna

# Mapping: Functions → Technologies Objective



- Given the functional project of a <u>specific</u> control system
  - Usually compliant with the general functional scheme
- > Design the corresponding technological scheme
  - Should be compliant with the general technological scheme
    - Otherwise: hard to be realized, not standard
  - Possibly optimal: best trade-off performance/costs
    - Performance: also flexibility, expandibility...

### **Proposed Guidelines**

1a) For each control function/algorithm, define:

- the type of necessary computing unit
  - Digital electronics + informatics: PC, PLC, microcontroller
    - Different "computing power"
  - Analog electronics and/or FPGA-PLD-non programmable logics
  - Electro-mechanics (relays etc.)
  - ..... (often a-priori constraints)
- detailed implementation requirements
  - Sampling time
  - Numeric precision
  - • •

# **Proposed guidelines**

1b) Define typology and specs for sensors and actuators to be used

- Range / size
- Accuracy

• • • • • • •

- 2) Group control functions/algorithms depending on:
  - similarity in the type of the required computing unit
  - hierarchical closeness of functions or closeness of the systems to be controlled
  - → define the set of computing units to be used
    - Minimize numbers / costs
    - Many functions/algorithms on 1 unit: multitasking...
    - Save margin...

### **Proposed Guidelines**

- 3) Define communication systems among computing units and interfacing with sensors/actuators
  - Possible integration
  - Remark:

Make explicit and satisfy speed and determinism reqs coming from functional design Reserved channels for critical communication/interfacing

- 4) Define external communication system
  - Minimize impacts on other functions

# Remark: obviously some steps could cause review of previous ones

# **Proposed Guidelines**

**Comments:** 

We have seen "what to do", not "how to do".

For "how to do" deep knowledge of typical components of technological platform is crucial.

# **Proposed Guidelines**

**Comments:** 

Once the technological architecture has been defined, Detailed designs (or buying) begin for all components

• Different designers (complex systems)

Problems in tech architecture should be found ASAP

## Û

Better spending time at the beginning in overall system analysis, before starting detailed design. (generally true...)

## In the following... Next topics:

- > Deeper analysis of technological components
  - Design issues for some of them
- > Mapping is not deeply considered
  - Customized for each case
- > We will start with electronics and informatics for controloriented computing units.

#### Then:

Fundamental digression: functional design of logic control Then:

# Sensors and Actuators (elec. drives) for industrial automation

#### Ingegneria e Tecnologie dei Sistemi di Controllo T Control Systems Technologies

#### Architectures and Technologies in Control Systems

The End

Ing. Christian Conficoni (prof. Andrea Tilli) DEI - Alma Mater Studiorum Università di Bologna E-mail: <u>christian.conficoni@unibo.it</u> https://www.unibo.it/sitoweb/christian.conficoni3