117 research outputs found

    Simulation-Based Graph Similarity

    Get PDF
    We present symmetric and asymmetric similarity measures for labeled directed rooted graphs that are inspired by the simulation and bisimulation relations on labeled transition systems. Computation of the similarity measures has close connections to discounted Markov decision processes in the asymmetric case and to perfect-information stochastic games in the symmetric case. For the symmetric case, we also give a polynomial-time algorithm that approximates the similarity to any desired precision

    Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources

    Full text link
    We cross-correlate the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modelling the theoretical expectation for this signal, we extract the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas (thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7 \sigma level, which is consistent with the theoretical prediction based on observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma level, which is consistent with the expected value for the concordance LCDM cosmology, and is an independent signature of the presence of dark energy in the universe. Finally, we see the signature of microwave point sources at the 2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions based on referee's comments, after correcting for a bug in the code, the SZ detection is consistent with the X-ray observations. Accepeted for publication in Physical Review

    Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects

    Full text link
    Interelectron interactions and correlations in quantum dots can lead to spontaneous symmetry breaking of the self-consistent mean field resulting in formation of Wigner molecules. With the use of spin-and-space unrestricted Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for field-free conditions, as well as under the influence of an external magnetic field. Using as paradigms impurity-doped (as well as the limiting case of clean) two-electron quantum dots (which are analogs to helium-like atoms), it is shown that the interplay between the interelectron repulsion and the electronic zero-point kinetic energy leads, for a broad range of impurity parameters, to formation of a singlet ground-state electron molecule, reminiscent of the molecular picture of doubly-excited helium. Comparative analysis of the conditional probability distributions for the sS-UHF and the exact solutions for the ground state of two interacting electrons in a clean parabolic quantum dot reveals that both of them describe formation of an electron molecule with similar characteristics. The self-consistent field associated with the triplet excited state of the two-electron quantum dot (clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller type, similar to that underlying formation of nonspherical open-shell nuclei and metal clusters. Furthermore, impurity and/or magnetic-field effects can be used to achieve controlled manipulation of the formation and pinning of the discrete orientations of the Wigner molecules. Impurity effects are futher illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain the difference between Wigner and Jahn-Teller electron molecules. A complete version of the paper with high quality figures inside the text is available at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Global CO2 emissions from dry inland waters share common drivers across ecosystems

    Get PDF
    Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle

    Global CO2 emissions from dry inland waters share common drivers across ecosystems

    Get PDF
    ©. This manuscript version is made available under the CC BY 4.0 license http://creativecommons.org/licenses/ccby/4.0/ This document is the Published, version of a Published Work that appeared in final form in [Nature communications]. To access the final edited and published work see [https://doi.org/.1038/s41467-020-15929-y]Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle
    corecore