46 research outputs found

    Crab-meat-isolated psychrophilic spore forming bacteria inactivation by electron beam ionizing radiation

    Get PDF
    The present work was performed to evaluate the potential of electron beam ionizing radiation for the inactivation of three psychrophilic spore forming bacteria (Bacillus mycoides, Bacillus weihenstephanensis and Psychrobacillus psychrodurans) isolated from ready-to-eat brown crab (Cancer pagurus). Inactivation curves for the three spores were performed in both types of crab meat, brown and white. Also the effect of pH and water activity (aw) on the lethal efficacy of ionizing radiation, for the three different psychrophilic spore forming bacteria, was evaluated. The effects of pH, aw and their possible interactions were assessed in citrate-phosphate buffers of different pH, ranging between 7 and 4, and aw, ranging from 0.99 and 0.90, while an aw reduction from 0.90 to 0.80 had a minor impact on their resistance. In contrast to aw, the effect of pH showed a greater variability depending on the spore species. While pH did not affect the resistance of B. weihenstephanensis at any aw, B. mycoides showed slightly higher resistance at pH 5.5¿at aw of 0.90 and 0.80. pH showed a significant effect on the resistance of P. psychrodurans. For the two types of crab meat, slightly differences were observed in 6D values. B. weihenstephanensis was the most resistant, requiring 7.3–7.6¿kGy to inactivate 6 Log10-cycles of this spore forming bacterium, while for B. mycoides and P. psychrodurans 6.1–6.3 and 5.4–5.3¿kGy respectively were necessary to reach the same inactivation level in crab meat. An agreement between spore resistance in crab meats and lab media, with similar characteristics in pH and aw, was also observed. The results obtained in this research demonstrated the potential for ionizing radiation to achieve an appropriate inactivation level of spores naturally present in brown crab with the application of doses lower than 10¿kGy

    Mechanism of the synergistic inactivation of Escherichia coli by UV-C light at mild temperatures

    Get PDF
    UV light only penetrates liquid food surfaces to a very short depth, thereby limiting its industrial application in food pasteurization. One promising alternative is the combination of UV light with mild heat (UV-H), which has been demonstrated to produce a synergistic bactericidal effect. The aim of this article is to elucidate the mechanism of synergistic cellular inactivation resulting from the simultaneous application of UV light and heat. The lethality of UV-H treatments remained constant below ~45ºC, while lethality increased exponentially as the temperature increased. The percentage of synergism reached a maximum (40.3%) at 55ºC. Neither the flow regimen nor changes in the dose delivered by UV lamps contributed to the observed synergism. UV-H inactivation curves of the parental Escherichia coli strain obtained in a caffeic acid selective recovery medium followed a similar profile to those obtained with uvrA mutant cells in a nonselective medium. Thermal fluidification of membranes and synergistic lethal effects started around 40 to 45ºC. Chemical membrane fluidification with benzyl alcohol decreased the UV resistance of the parental strain but not that of the uvrA mutant. These results suggest that the synergistic lethal effect of UV-H treatments is due to the inhibition of DNA excision repair resulting from the membrane fluidification caused by simultaneous heating

    Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and staphylococcus aureus by high hydrostatic pressure

    Get PDF
    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (¿V°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ¿V° values are approximately 5.0 to 7.0 cm3 mol-1, than in phosphate or dimethyl glutarate (DMG), whose ¿V° values are about -25 cm3 mol-1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes

    UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Get PDF
    This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment) to inactivate 5-Log10 cycles (performance criterion) of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature) that would achieve the stated performance criterion, mathematical equations based on Geeraerd''s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min) and 2.26 J/mL (2.09 min) to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C

    Protective effect of glutathione on Escherichia coli cells upon lethal heat stress

    Get PDF
    Heat treatments are widely used by the food industry to obtain safe and stable products, therefore a deeper knowledge of its mode of action on microorganisms would allow a better profit of this technology. Heat shows a multitarget mechanism of action on bacteria, affecting various cellular structures, and causing unbalances in several homeostatic parameters. The aim of this work was to study the effect of glutathione on bacterial survival against heat treatments, in order to acquire knowledge about the mode of action of heat on bacterial cells. Cells were treated in presence or absence of added glutathione and the level of inactivation, soluble protein concentration, enzymatic activities, intracellular ROS level and membrane damages were studied. Results showed that glutathione protected microorganisms against heat inactivation. Moreover, glutathione in the treatment medium preserved intracellular enzyme activity, membrane structure and reduced ROS detection. Besides, glutathione decreased sublethal injury in E. coli. Data presented in this work add new knowledge about bacterial inactivation and survival by heat

    Oxidative stress in E. coli cells upon exposure to heat treatments

    Get PDF
    Heat treatments are widely used by the food industry to inactivate microorganisms, however their mode of action on microbial cells is not fully known. In the last years, it has been proposed that the generation of oxidative species could be an important factor contributing to cell death by heat and by other stresses; however, investigations in this field are scarce. The present work studies the generation of reactive oxygen species (ROS) upon heat treatment in E. coli, through the use of cell staining with specific fluorochromes. Results obtained demonstrate that ROS are detected in E. coli cells when they are subjected to heat exposure, and the amount of fluorescence increases with temperature and time, as does the cellular inactivation. The addition of glutathione or tiron, a potent antioxidant and a superoxide quencher, respectively, to the heating medium protected E. coli against heat inactivation and concurrently reduced the detection of ROS, especially in the case of glutathione. Finally, recovery of heated cells under conditions that relief oxidative stress produced an increase in cell survival. Data presented in this work support the view that ROS generation and subsequent control in bacterial cells could be an essential factor determining inactivation and survival upon exposure to heat, and it could be a potential target to increase the efficacy of current treatments

    Quality-Based Thermokinetic Optimization of Ready-to-Eat Whole Edible Crab (Cancer pagurus) Pasteurisation Treatments

    Get PDF
    Traditional processing practices used in the manufacture of ready-to-eat edible crab products include a double-heat treatment involving an initial cooking step followed by washing and packaging and finally, a second heat pasteurisation. The latter, pasteurisation step, results in the most severe impact on product quality. The main objective of this research was to optimise this pasteurisation step using quality index degradation kinetic approach. Preliminary work involved the characterisation of temperature rise in the crab cold-spot during pasteurisation. Equivalent treatments (F90°C 10°C = 10 min) were defined in order to assess the impact of pasteurisation temperature on different crab quality indexes in both crab meat types, white and brown. Colour degradation of crab white meat was defined as the critical quality parameter to be monitored during thermal pasteurisation. The effect of time and temperature on the kinetics of white meat colour change (¿E*) were characterised and fitted to an exponential equation. Following this, an industry focus group was used to define white meat colour change vs product quality and defined ‘good’ (¿E* = 7), ‘acceptable’ (7 < ¿E* < 9) and ‘unacceptable’ (¿E* = 9) quality. Finally, using the developed equations, optimal pasteurisation conditions were defined and validated. To produce ‘good’ quality crab, optimal temperatures ranged between 96 and 100 °C while temperatures between 104 and 108 °C produced ‘acceptable’ quality in crabs of 400 and 800 g, respectively. Overall, the results show that the equations obtained could be used in a decision support system (DSS) to define heat pasteurisation conditions to optimise the quality of ready-to-eat edible crab

    Termo-inactivación de E. coli, en zumo de manzana, en condiciones anisotérmicas

    Get PDF
    Se ha demostrado que el zumo de manzana puede ser vehículo de transmisión de diversas toxiinfecciones alimentarias, lo que hace recomendable su higienización antes de la distribución comercial. En la actualidad los tratamientos suelen calcularse a partir de datos de termorresistencia obtenidos en laboratorio en condiciones isotérmicas, mientras que el procesado industrial normalmente se basa en la aplicación de calentamientos anisotérmicos. Esta extrapolación puede ser causa de importantes errores porque existen pruebas fehacientes de que durante los tratamientos anisotérmicos pueden producirse fenómenos de adaptación y/o sensibilización de las células al calor. El objetivo de esta investigación fue determinar si los datos obtenidos en condiciones isotérmicas permitían predecir los ritmos de inactivación en condiciones anisotérmicas y, en caso de no permitirlo, cuantificar las diferencias y explorar las causas. Para el estudio decidimos utilizar la cepa K12 de la colección KEIO (BW25113) para facilitar futuros estudios de los mecanismos de muerte, daño y adaptación al calor. Los resultados nos han permitido concluir que los parámetros de resistencia deducidos de tratamientos isotérmicos no son adecuados para predecir con fiabilidad el ritmo de inactivación en condiciones anisotérmicas. Los errores de predicción aumentaban con el ritmo de calentamiento: cuanto mayor era el ritmo menor era el valor DT y mayor el valor z aparente. La falta de coincidencia entre predichos y experimentales se debía a una sensibilización al calor de las células al ser calentadas en zumo de manzana. Esta sensibilización era tanto mayor cuanto mayor era el tiempo de exposición, y más rápida y mayor cuanto más alta era la temperatura

    An assessment of the application of ultrasound in the processing of ready-to-eat whole brown crab (Cancer pagurus)

    Get PDF
    This study assesses the potential of incorporating ultrasound as a processing aid in the production of whole cooked brown crab (Cancer pagurus). The FDA recommended heat treatment to reduce Listeria monocytogenes by 6 log10 cycles in this product is a F70 7.5 of 2 min. An equivalent F value was applied at 75 °C in presence and absence of ultrasound in water alone or in water with 5% w/v NaCl added. Heat penetration, turbidity and conductivity of the cook water and also salt and moisture content of the crab meat (white and brown) were determined. Ultrasound assisted cooking allowed a reduction of the cooking time by up to 15% while still maintaining an F70 7.5 of 2 min. Ultrasound also enhanced the rate and total amount of compounds released from the crab, which suggests that crabs cooked in the presence of ultrasound would be expected to be cleaner. Ultrasound also proved to be effective in reducing the salt content but hardly affected the final moisture content of the crab meat

    Optimization and validation of a new microbial inhibition test for the detection of antimicrobial residues in living animals intended for human consumption

    Get PDF
    Even though antibiotics are necessary in livestock production, they can be harmful not only due to their toxicity, but also in view of their contribution to the emergence of antimicrobial resistance. Screening tests based on microbial growth inhibition appeared to be useful tools to prevent its entry into the food chain. They have nevertheless been traditionally carried out post mortem, leading to great economical loss and harm to the environment in case a positive sample is found. Hence, the objective was to evaluate the use of a screening test as an ante mortem alternative for the detection of antibiotic residues in meat: thus, Explorer®-Blood test was optimized and validated. After adapting the procedure for matrix preparation, the assay parameters were assessed from 344 antibiotic-free blood serum samples. Limits of Detection (LoDs) were defined by spiking blood serum with several of the most common antimicrobials used in veterinary practice. LoDs were similar to those obtained for meat and were at or below the maximum residue limits set by EU legislation for muscle. Analyses of in vivo injected samples, previously characterized by LC-MS/MS, demonstrated the method’s accuracy and proved that Explorer®-Blood can be considered a suitable alternative to conventional post mortem screening methods
    corecore