34 research outputs found

    3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin

    Get PDF
    We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative 10 inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation. Compound 10 minimally affected the proliferation of normal blood cells, indicating that it may be a promising agent to overcome broad tyrosine kinase inhibitor resistance in relapsed/refractory CML patients. Compound 10 significantly decreased CML proliferation by inducing G2/M phase arrest and apoptosis via a mitochondria-dependent pathway. ARDAP 10 augmented the cytotoxic effects of IM in human CML cells. Compound 10 represents a robust lead compound to develop tubulin inhibitors with potential as novel treatments for CML

    NHERF1 Between Promises and Hopes: Overview on Cancer and Prospective Openings

    No full text
    Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein, with two tandem PDZ domains and a carboxyl-terminal ezrin-binding (EB) region. This particular sticky structure is responsible for its interaction with different molecules to form multi-complexes that have a pivotal role in a lot of diseases. In particular, its involvement during carcinogenesis and cancer progression has been deeply analyzed in different tumors. The role of NHERF1 is not unique in cancer; its activity is connected to its subcellular localization. The literature data suggest that NHERF1 could be a new prognostic/predictive biomarker from breast cancer to hematological cancers. Furthermore, the high potential of this molecule as therapeutical target in different carcinomas is a new challenge for precision medicine. These evidences are part of a future view to improving patient clinical management, which should allow different tumor phenotypes to be treated with tailored therapies. This article reviews the biology of NHERF1, its engagement in different signal pathways and its involvement in different cancers, with a specific focus on breast cancer. It also considers NHERF1 potential role during inflammation related to most human cancers, designating new perspectives in the study of this “Janus-like” protein

    Peritumoral vascular invasion and NHERF1 expression define an immunophenotype of grade 2 invasive breast cancer associated with poor prognosis

    Get PDF
    Abstract Background Traditional determinants proven to be of prognostic importance in breast cancer include the TNM staging, histological grade, proliferative activity, hormone receptor status and HER2 overexpression. One of the limitations of the histological grading scheme is that a high percentage of breast cancers are still classified as grade 2, a category with ambiguous clinical significance. The aim of this study was to best characterize tumors scored as grade 2. Methods We investigated traditional prognostic factors and a panel of tumor markers not used in routine diagnosis, such as NHERF1, VEGFR1, HIF-1α and TWIST1, in 187 primary invasive breast cancers by immunohistochemistry, stratifying patients into good and poor prognostic groups by the Nottingham Prognostic Index. Results Grade 2 subgroup analysis showed that the PVI (p = 0.023) and the loss of membranous NHERF1 (p = 0.028) were adverse prognostic factors. Relevantly, 72% of grade 2 tumors were associated to PVI+/membranous NHERF1- expression phenotype, characterizing an adverse prognosis (p = 0.000). Multivariate logistic regression analysis in the whole series revealed poor prognosis correlated with PVI and MIB1 (p = 0.000 and p = 0.001, respectively). Furthermore, in the whole series of breast cancers we found cytoplasmic NHERF1 expression positively correlated to VEGFR1 (r = 0.382, p = 0.000), and in VEGFR1-overexpressing tumors the oncogenic receptor co-localized with NHERF1 at cytoplasmic level. Conclusions The PVI+/membranous NHERF1- expression phenotype identifies a category of grade 2 tumors with the worst prognosis, including patient subgroup with a family history of breast cancer. These observations support the idea of the PVI+/membranous NHERF1- expression immunophenotype as a useful marker, which could improve the accuracy of predicting clinical outcome in grade 2 tumors.</p

    Is going for cure in CML targeting aberrant Glycogen Synthase Kinase 3β?

    No full text
    Chronic Myelogenous Leukemia (CML)-initiating cells (CICs) express the hybrid oncoprotein BCR-ABL at the highest levels compared to their differentiated progeny but fail to expand at the same rate as downstream leukemic myeloid cells. Moreover, the primitive stem cell clone that originates the indolent CML chronic phase (CP) remains almost invariant as the disease evolves to a fatal blast crisis (BC). Compared to their healthy counterpart, the most dormant BCR-ABL+ CICs show the tendency to remain in a somewhat unusual 'proliferative quiescence', i.e. a prolonged low-energy viable state that restrains the frequency of symmetrical (self-renewing) cell divisions while enforcing cell cycle entry and myeloid commitment under cytokine support. Over the past few years, we and others have proposed the nutrient-sensing protein serine/threonine kinase GSK3β (glycogen synthase kinase 3β) as an attractive target to eradicate leukemia-initiating cells while sparing normal haematopoiesis. Beyond its natural negative effects on self-renewal, through the inhibitory phosphorylation of β-Catenin (Wnt signalling) and c-MYC (Hedgehog signalling), hyperactive GSK3β is reportedly crucial to link energy metabolism and nutrient availability to stem cell homeostasis processes. This review will integrate current evidence pertaining to the biological relevance of GSK3β in normal and malignant haematopoiesis, with particular emphasis on its role(s) at the CML CP stage and BC transformation. Preclinical evidence earmarking the use of novel small-molecule inhibitors of GSK3β as effective anti-leukemia agents are also discussed

    Independent Negative Prognostic Role of TCF1 Expression within the Wnt/β-Catenin Signaling Pathway in Primary Breast Cancer Patients

    No full text
    The Wnt pathway is involved in the progression of breast cancer (BC). We aimed to evaluate the expression of some components of the Wnt pathway (&beta;-catenin, FZD4 (frizzled receptor 4), LRP5 (low-density lipoprotein receptor-related protein 5), LRP6, and TCF1 (T-cell factor 1)) to detect potential associations with NHERF1 (Na+/H+ exchanger regulatory factor 1) protein. Besides, we assessed their impact on patients&rsquo; clinical outcome. We evaluated 220 primary BC samples by immunohistochemistry (IHC) and protein localization by immunofluorescence. We found a significant correlation between NHERF1 and FZD4, LRP5, LRP6, and TCF1. Univariate analysis showed that the overexpression of &beta;-catenin (p &lt; 0.0001), FZD4 (p = 0.0001), LRP5, LRP6, and TCF1 (p &lt; 0.0001 respectively) was related to poor disease-free survival (DFS). A Kaplan-Meier analysis confirmed univariate data and showed a poor DFS for cNHERF1+/FZD4+ (p = 0.0007), cNHERF1+/LRP5+ (p = 0.0002), cNHERF1+/LRP6+ (p &lt; 0.0001), and cNHERF1+/TCF1+ phenotypes (p = 0.0034). In multivariate analysis, the expression of TCF1 and &beta;-catenin was an independent prognostic variable of worse DFS (p = 0.009 and p = 0.027, respectively). In conclusion, we found that the overexpression of &beta;-catenin, FZD4, LRP5, LRP6, and TCF1 was associated with poor prognosis. Furthermore, we first identified TCF1 as an independent prognostic factor of poor outcome, indicating it as a new potential biomarker for the management of BC patients. Also, the expression of Wnt pathway proteins, both alone and in association with NHERF1, suggests original associations of biological significance for new studies

    VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer.

    Get PDF
    Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients

    Hypovitaminosis D in patients with heart failure: effects on functional capacity and patients' survival

    No full text
    Chronic heart failure is a major cause of morbidity and mortality, but its prognosis remains poor. Vitamin D hormone has many extra-skeletal functions including a positive impact on the cardiovascular system, and has been proposed for mortality risk evaluation in heart failure patients. The aim of the present study was to evaluate vitamin D status in heart failure patients, measured by high performance liquid chromatography coupled with mass spectrometry and to correlate serum 25 hydroxy-vitamin D (25OHD) levels with functional (peak VO2%) and mortality (Metabolic Exercise Cardiac Kidney Index) heart failure parameters. We enrolled 261 consecutive patients diagnosed with heart failure; all patients underwent a comprehensive clinical and biochemical characterization, and serum 25OHD levels were measured by high performance liquid chromatography coupled with mass spectrometry. Cardiopulmonary test parameters and Metabolic Exercise Cardiac Kidney Index of mortality risk were measured in all patients. Serum 25OHD levels ranged between 2 and 45 ng/ml (mean 17 ± 9 ng/ml); most patients (87%) showed hypovitaminosis D, and 25% showed severe vitamin D deficiency (serum 25OHD  10 ng/ml. Patients with peak VO2%  50%. There was a significant, positive correlation (r = 0.16, p = 0.008) between 25OHD levels and peak VO2%, and an inverse correlation with Metabolic Exercise Cardiac Kidney Index (r = -0.21, p < 0.001), even when adjusted for age, Body Mass Index, MDRD, N-terminalproBrain natriuretic peptide. In conclusion, our findings show that vitamin D levels are associated with functional and mortality heart failure prognosis parameters

    NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM

    No full text
    Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&amp;E)-stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover, conventional semantic segmentation architectures grounded on convolutional neural networks (CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these problems, we present an innovative method based on gradient-weighted class activation mapping (Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps. The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM, has performance in line with state-of-the-art methods, especially in isolating the different nuclei instances, and can be generalized for different organs and tissues. Experimental results demonstrated a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation set. When used in combined mode with instance segmentation architectures such as Mask R-CNN, the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934 and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal epithelium but also to other cytotypes

    NHERF1 and tumor microenvironment: a new scene in invasive breast carcinoma

    No full text
    Abstract Background Tumor microenvironment (TME) includes many factors such as tumor associated inflammatory cells, vessels, and lymphocytes, as well as different signaling molecules and extracellular matrix components. These aspects can be de-regulated and consequently lead to a worsening of cancer progression. In recent years an association between the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) and tumor microenvironment changes in breast cancer (BC) has been reported. Methods Subcellular NHERF1 localization, vascular endothelial growth factor (VEGF), its receptor VEGFR1, hypoxia inducible factor 1 alpha (HIF-1α), TWIST1 expression and microvessel density (MVD) in 183 invasive BCs were evaluated, using immunohistochemistry on tissue microarrays (TMA). Immunofluorescence was employed to explore protein interactions. Results Cytoplasmic NHERF1(cNHERF1) expression was directly related to cytoplasmic VEGF and VEGFR1 expression (p = 0.001 and p = 0.027 respectively), and inversely to nuclear HIF-1α (p = 0.021) and TWIST1 (p = 0.001). Further, immunofluorescence revealed an involvement of tumor cells with NHERF1 positive staining in neo-vascular formation, suggesting a “mosaic” structure development of these neo-vessels. Survival analyses showed that loss of nuclear TWIST1 (nTWIST1) expression was related to a decrease of disease free survival (DFS) (p < 0.001), while nTWIST1-/mNHERF1+ presented an increased DFS with respect to nTWIST1+/mNHERF1- phenotype (p < 0.001). Subsequently, the analyses of nTWIST1+/cNHERF1+ phenotype selected a subgroup of patients with a worse DFS compared to nTWIST1-/cNHERF1- patients (p = 0.004). Conclusion Resulting data suggested a dynamic relation between NHERF1 and TME markers, and confirmed both the oncosuppressor role of membranous NHERF1 expression and the oncogene activity of cytoplasmic NHERF1

    Downstream Signaling of Inflammasome Pathway Affects Patients&rsquo; Outcome in the Context of Distinct Molecular Breast Cancer Subtypes

    No full text
    Inflammasomes are protein complexes involved in the regulation of different biological conditions. Over the past few years, the role of NLRP3 in different tumor types has gained interest. In breast cancer (BC), NLRP3 has been associated with multiple processes including epithelia mesenchymal transition, invasion and metastization. Little is known about molecular modifications of NLRP3 up-regulation. In this study, in a cohort of BCs, the expression levels of NLRP3 and PYCARD were analyzed in combination with CyclinD1 and MYC ones and their gene alterations. We described a correlation between the NLRP3/PYCARD axis and CyclinD1 (p &lt; 0.0001). NLRP3, PYCARD and CyclinD1&rsquo;s positive expression was observed in estrogen receptor (ER) and progesterone receptor (PgR) positive cases (p &lt; 0.0001). Furthermore, a reduction of NLRP3 and PYCARD expression has been observed in triple negative breast cancers (TNBCs) with respect to the Luminal phenotypes (p = 0.017 and p = 0.0015, respectively). The association NLRP3+/CCND1+ or PYCARD+/CCND1+ was related to more aggressive clinicopathological characteristics and a worse clinical outcome, both for progression free survival (PFS) and overall survival (OS) with respect to NLRP3+/CCND1&minus; or PYCARD+/CCND1&minus; patients, both in the whole cohort and also in the subset of Luminal tumors. In conclusion, our study shows that the NLRP3 inflammasome complex is down-regulated in TNBC compared to the Luminal subgroup. Moreover, the expression levels of NLRP3 and PYCARD together with the alterations of CCND1 results in Luminal subtype BC&rsquo;ss poor prognosis
    corecore