12 research outputs found

    Caveolin Transfection Results in Caveolae Formation but Not Apical Sorting of Glycosylphosphatidylinositol (GPI)-anchored Proteins in Epithelial Cells

    Get PDF
    Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes

    Identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression

    No full text
    Here, we show that recombinant Drosophila elp1 (D-elp1) produced in Sf9 cells or Escherichia coli, corresponding to the largest of the three subunits in the RNA polymerase II core elongator complex, has RNA-dependent RNA polymerase (RdRP) activity. D-elp1 is a noncanonical RdRP that can synthesize dsRNA from different ssRNA templates using either a primer-dependent or primer-independent initiation mechanism. Of the three core subunits, only D-elp1 depletion inhibits RNAi in S2 cells but does not affect micro RNA function. Furthermore, D-elp1 depletion results in increased steady state levels of representative transposon RNAs and a decrease in the corresponding transposon antisense transcripts and endo siRNAs. In contrast, although Dcr-2 depletion results in increased transposon RNA levels and a reduction in the corresponding endo siRNAs, there is no change in the transposon antisense RNA levels. In D-elp1 null third instar larvae transposon RNA levels are also increased and the corresponding transposon antisense RNAs are reduced. D-elp1 associates tightly with Dcr-2, similar to the Dicer-RdRP interaction observed in lower eukaryotes. These results identify an aspect of the RNAi pathway in Drosophila that suggest transposon derived endo siRNAs, critical for transposon suppression, are produced, in part, in a D-elp1 dependent step that converts transposon RNA into dsRNA that is subsequently processed by Dcr-2. The generality of this mechanism in genome defense and RNA silencing in higher eukaryotes is suggested

    Detergent-insoluble GPI–anchored Proteins Are Apically Sorted in Fischer Rat Thyroid Cells, but Interference with Cholesterol or Sphingolipids Differentially Affects Detergent Insolubility and Apical Sorting

    No full text
    In contrast to Madin–Darby canine kidney cells, Fischer rat thyroid cells deliver the majority of endogenous glycosylphosphatidyl inositol (GPI)–anchored proteins to the basolateral surface. However, we report here that the GPI proteins Placental Alkaline Phosphatase (PLAP) and Neurotrophin Receptor–Placental Alkaline Phosphatase (NTR-PLAP) are apically localized in transfected Fischer rat thyroid cells. In agreement with the “raft hypothesis,” which postulates the incorporation of GPI proteins into glycosphingolipids and cholesterol-enriched rafts, we found that both of these proteins were insoluble in Triton X-100 and floated into the lighter fractions of sucrose density gradients. However, disruption of lipid rafts by removal of cholesterol did not cause surface missorting of PLAP and NTR-PLAP, and the altered surface sorting of these proteins after Fumonisin B1 treatment did not correlate with reduced levels in Triton X-100 –insoluble fractions. Furthermore, in contrast to the GPI-anchored forms of both of these proteins, the secretory and transmembrane forms (in the absence of a basolateral cytoplasmic signal) were sorted to the apical surface without association with lipid microdomains. Together, these data demonstrate that the GPI anchor is required to mediate raft association but is not sufficient to determine apical sorting. They also suggest that signals present in the ectodomain of the proteins play a major role and that lipid rafts may facilitate the recognition of these signals in the trans-Golgi network, even though they are not required for apical sorting

    Benefit–Risk Assessment of Rivaroxaban for Extended Thromboprophylaxis After Hospitalization for Medical Illness

    No full text
    Background Venous thromboembolism (VTE) often occurs after hospitalization in medically ill patients, but the population benefit–risk of extended thromboprophylaxis remains uncertain. Methods and Results The MARINER (Medically Ill Patient Assessment of Rivaroxaban Versus Placebo in Reducing Post‐Discharge Venous Thrombo‐Embolism Risk) study (NCT02111564) was a randomized double‐blind trial that compared thromboprophylaxis with rivaroxaban 10 mg daily versus placebo for 45 days after hospital discharge in medically ill patients with a creatinine clearance ≄50 mL/min. The benefit–risk balance in this population was quantified by calculating the between‐treatment rate differences in efficacy and safety end points per 10 000 patients treated. Clinical characteristics of the study population were consistent with a hospitalized medical population at risk for VTE. Treating 10 000 patients with rivaroxaban resulted in 32.5 fewer symptomatic VTE and VTE‐related deaths but was associated with 8 additional major bleeding events. The treatment benefit was driven by the prevention of nonfatal symptomatic VTE (26 fewer events). There was no between‐treatment difference in the composite of critical site or fatal bleeding. Conclusions Extending thromboprophylaxis with rivaroxaban for 45 days after hospitalization provides a positive benefit–risk balance in medically ill patients at risk for VTE who are not at high risk for bleeding. Registration URL: https://clinicaltrials.gov/; Unique identifier: NCT02111564
    corecore