225 research outputs found

    Adding Evidence to the Role of NEUROG1 in Congenital Cranial Dysinnervation Disorders

    Get PDF
    Congenital cranial dysinnervation disorders (CCDDs) are a heterogeneous group of neurodevelopmental phenotypes caused by a primary disturbance of innervation due to deficient, absent, or misguided cranial nerves. Although some CCDDs genes are known, several clinical phenotypes and their aetiologies remain to be elucidated. We describe a 12-year-old boy with hypotonia, developmental delay, sensorineural hearing loss, and keratoconjunctivitis due to lack of corneal reflex. He had a long expressionless face, severe oromotor dysfunction, bilateral agenesis/severe hypoplasia of the VIII nerve with marked atresia of the internal auditory canals and cochlear labyrinth malformation. Trio-exome sequencing identified a homozygous loss of function variant in the NEUROG1 gene (NM_006161.2: c.202G > T, p.Glu68*). NEUROG1 is considered a causal candidate for CCDDs based on (i) the previous report of a patient with a homozygous gene deletion and developmental delay, deafness due to absent bilateral VIII nerves, and severe oromotor dysfunction; (ii) a second patient with a homozygous NEUROG1 missense variant and corneal opacity, absent corneal reflex and intellectual disability; and (iii) the knockout mouse model phenotype which highly resembles the disorder observed in humans. Our findings support the growing compelling evidence that loss of NEUROG1 leads to a very distinctive disorder of cranial nerves development.info:eu-repo/semantics/publishedVersio

    Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation

    Get PDF
    Wickerhamomyces anomalus LBCM1105 is a yeast isolated from cachaça distillery fermentation vats, notable for exceptional glycerol consumption ability. We report its draft genome with 20.5x in-depth coverage and around 90% extension and completeness. It harbors the sequences of proteins involved in glycerol transport and metabolism.The authors gratefully acknowledge Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE) and the Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) for support with the sequencing of LBCM1105. This work was supported by CAPES/Brazil (PNPD 2755/2011; PCF-PVE 021/2012), by CNPq (Brazil), processes 304815/2012 (research grant) and 305135/2015-5, and by AUXPE-PVES 1801/2012 (Process 23038.015294/2016-18) from Brazilian Government and by UFOP. C.L. is supported by the strategic program UID/BIA/04050/2013 [POCI-01-0145-FEDER-007569] funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional de Competitividade e Internacionalizacao (POCI). DMRP is a fellow from the CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) - Brazil (310080/2018-5)
    corecore