93 research outputs found

    Vibrational density of states of silicon nanoparticles

    Get PDF
    The vibrational density of states of silicon nanoparticles in the range from 2.3 to 10.3 nm is studied with the help of molecular-dynamics simulations. From these simulations the vibrational density of states and frequencies of bulk-like vibrational modes at high-symmetry points of the Brillouin-zone have been derived. The results show an increase of the density of states at low frequencies and a transfer of modes from the high-frequency end of the spectrum to the intermediate range. At the same time the peak of transverse optical modes is shifted to higher frequencies. These observations are in line with previous simulation studies of metallic nanoparticles and they provide an explanation for a previously observed discrepancy between experimental and theoretical data [C. Meier et al., Physica E, 32, 155 (2006)].Comment: 7 pages, 5 figure; accepted for publication in Phys. Rev.

    Exact thermodynamic Casimir forces for an interacting three-dimensional model system in film geometry with free surfaces

    Full text link
    The limit n to infinity of the classical O(n) phi^4 model on a 3d film with free surfaces is studied. Its exact solution involves a self-consistent 1d Schr\"odinger equation, which is solved numerically for a partially discretized as well as for a fully discrete lattice model. Numerically exact results are obtained for the scaled Casimir force at all temperatures. Obtained via a single framework, they exhibit all relevant qualitative features of the thermodynamic Casimir force known from wetting experiments on Helium-4 and Monte Carlo simulations, including a pronounced minimum below the bulk critical point.Comment: 5 pages, 2 figure

    Vida de la Sma. Virgen

    Get PDF
    Copia digital. España : Ministerio de Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 2019Ana Maria es seud. de Anne-Albe Cornelie de Beaurepaire, Comtesse Charles de HautefeuilleH. de lám. firmadas la mayoría por "Benedicto", otras por "Lozano", "Cibera" y "Varela"Segunda antep. litogr.: "A. Brabó delº, Litogª de F. Pérez y J. Donon, F. Pérez Litgº

    Novel autoantigens immunogenic in COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory condition with autoimmune features including IgG autoantibodies. In this study we analyze the complexity of the autoantibody response and reveal the nature of the antigens that are recognized by autoantibodies in COPD patients.</p> <p>Methods</p> <p>An array of 1827 gridded immunogenic peptide clones was established and screened with 17 sera of COPD patients and 60 healthy controls. Protein arrays were evaluated both by visual inspection and a recently developed computer aided image analysis technique. By this computer aided image analysis technique we computed the intensity values for each peptide clone and each serum and calculated the area under the receiver operator characteristics curve (AUC) for each clone and the separation COPD sera versus control sera.</p> <p>Results</p> <p>By visual evaluation we detected 381 peptide clones that reacted with autoantibodies of COPD patients including 17 clones that reacted with more than 60% of the COPD sera and seven clones that reacted with more than 90% of the COPD sera. The comparison of COPD sera and controls by the automated image analysis system identified 212 peptide clones with informative AUC values. By <it>in silico </it>sequence analysis we found an enrichment of sequence motives previously associated with immunogenicity.</p> <p>Conclusion</p> <p>The identification of a rather complex humoral immune response in COPD patients supports the idea of COPD as a disease with strong autoimmune features. The identification of novel immunogenic antigens is a first step towards a better understanding of the autoimmune component of COPD.</p

    Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate

    Full text link
    Motivated by recent experiments with confined binary liquid mixtures near demixing, we study the universal critical properties of a system, which belongs to the Ising universality class, in the film geometry. We employ periodic boundary conditions in the two lateral directions and fixed boundary conditions on the two confining surfaces, such that one of them has a spatially homogeneous adsorption preference while the other one exhibits a laterally alternating adsorption preference, resembling locally a single chemical step. By means of Monte Carlo simulations of an improved Hamiltonian, so that the leading scaling corrections are suppressed, numerical integration, and finite-size scaling analysis we determine the critical Casimir force and its universal scaling function for various values of the aspect ratio of the film. In the limit of a vanishing aspect ratio the critical Casimir force of this system reduces to the mean value of the critical Casimir force for laterally homogeneous ++ and +- boundary conditions, corresponding to the surface spins on the two surfaces being fixed to equal and opposite values, respectively. We show that the universal scaling function of the critical Casimir force for small but finite aspect ratios displays a linear dependence on the aspect ratio which is solely due to the presence of the lateral inhomogeneity. We also analyze the order-parameter profiles at criticality and their universal scaling function which allows us to probe theoretical predictions and to compare with experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart clas

    Gene expression of O-GlcNAc cycling enzymes in human breast cancers

    Get PDF
    O-GlcNAcylation is an abundant, dynamic, and inducible posttranslational modification in which single β-N-acetylglucosamine residues are attached by O-glycosidic linkage to serine or treonine residues. It is suggested that abnormally regulated O-GlcNAcylation may contribute to the pathology of cancer. Cycling of O-GlcNAc residues on intracellular proteins is controlled by two enzymes, O-GlcNAc transferease (OGT), which catalyses the addition of O-GlcNAc residues and nucleocytoplasmic β-N-acetylglucosaminidase (O-GlcNAcase; encoded by MGEA5 gene), an enzyme involved in the removal of O-GlcNAc. In this study, relationship between the mRNA expressions of genes coding O-GlcNAc cycling enzymes in breast ductal carcinomas and clinicopathological parameters were analyzed. The results showed that poorly differentiated tumors (grade II and III) had significantly higher OGT expression than grade I tumors. Contrary, MGEA5 transcript levels were significantly lower in grade II and III in comparison with grade I tumors. The Spearman rank correlation showed the expressions of OGT and MGEA5 in breast cancer was negatively correlated (r = −0.430, P = 0.0002). Lymph node metastasis status was significantly associated with decreased MGEA5 mRNA expression. This result suggests that elevation in O-GlcNAc modification of proteins may be implicated in breast tumor progression and metastasis

    First-principles calculation of the instability leading to giant inverse magnetocaloric effects

    Get PDF
    The structural and magnetic properties of functional Ni-Mn-Z (Z=Ga, In, Sn) Heusler alloys are studied by first-principles and Monte Carlo methods. The ab initio calculations give a basic understanding of the underlying physics which is associated with the strong competition of ferro- and antiferromagnetic interactions with increasing chemical disorder. The resulting d-electron orbital dependent magnetic ordering is the driving mechanism of magnetostructural instability which is accompanied by a drop of magnetization governing the size of the magnetocaloric effect. The thermodynamic properties are calculated by using the ab initio magnetic exchange coupling constants in finite-temperature Monte Carlo simulations, which are used to accurately reproduce the experimental entropy and adiabatic temperature changes across the magnetostructural transition

    Identification of lung cancer with high sensitivity and specificity by blood testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is a very frequent and lethal tumor with an identifiable risk population. Cytological analysis and chest X-ray failed to reduce mortality, and CT screenings are still controversially discussed. Recent studies provided first evidence for the potential usefulness of autoantigens as markers for lung cancer.</p> <p>Methods</p> <p>We used extended panels of arrayed antigens and determined autoantibody signatures of sera from patients with different kinds of lung cancer, different common non-tumor lung pathologies, and controls without any lung disease by a newly developed computer aided image analysis procedure. The resulting signatures were classified using linear kernel Support Vector Machines and 10-fold cross-validation.</p> <p>Results</p> <p>The novel approach allowed for discriminating lung cancer patients from controls without any lung disease with a specificity of 97.0%, a sensitivity of 97.9%, and an accuracy of 97.6%. The classification of stage IA/IB tumors and controls yielded a specificity of 97.6%, a sensitivity of 75.9%, and an accuracy of 92.9%. The discrimination of lung cancer patients from patients with non-tumor lung pathologies reached an accuracy of 88.5%.</p> <p>Conclusion</p> <p>We were able to separate lung cancer patients from subjects without any lung disease with high accuracy. Furthermore, lung cancer patients could be seprated from patients with other non-tumor lung diseases. These results provide clear evidence that blood-based tests open new avenues for the early diagnosis of lung cancer.</p
    corecore