49 research outputs found

    Interleukin 1 induces an autocrine loop hepatocyte growth factor/c-Met in murine Kaposi-like spindle cells

    No full text
    Several cytokines, growth factors and the HIV transactivator Tat were shown to be involved in the pathogenesis of Kaposi's sarcoma. BKV/tat transgenic mice develop Kaposi's sarcoma-like lesions, and spindle-shaped cells (TTB) have been derived from these lesions. Here we show that TTB cells co-express hepatocyte growth factor (HGF) and its receptor, the product of the oncogene c-Met. An autocrine loop HGF/Met sustains spindle cell proliferation in vitro; indeed, an antisense oligomer targeted against HGF markedly inhibited cell growth. Moreover, HGF and Met are overexpressed after exposing TTB cells to the proinflammatory cytokine interleukin 1 (IL-1). We argue that upon exposure to IL-1, an HGF/Met autocrine loop is induced which could explain the appearance of multiple foci of uncontrolled growth. In addition, due to its angiogenic activity, HGF may also sustain the neovascularization typical of Kaposi's sarcoma lesions

    Constitutive Activation of the Ron Gene Promotes Invasive Growth but not Transformation

    No full text
    MET, RON, and SEA are members of a gene family encoding tyrosine kinase receptors with distinctive properties. Besides mediating growth, they control cell dissociation, motility ("scattering"), and formation of branching tubules. While there are transforming counterparts of MET and SEA, no oncogenic forms of RON have yet been identified. A chimeric Tpr-Ron, mimicking the oncogenic form of Met (Tpr-Met) was generated to investigate its transforming potential. For comparison, a chimeric Tpr-Sea was also constructed. Fusion with Tpr induced constitutive activation of the Ron and Sea kinases. While Tpr-Sea was more efficient than Tpr-Met in transformation, Tpr-Ron did not transform NIH 3T3 cells. The differences in the transforming abilities of Tpr-Met and Tpr-Ron were linked to the functional features of the respective tyrosine kinases using the approach of swapping subdomains. Kinetic analysis showed that the catalytic efficiency of Tpr-Ron is five times lower than that of Tpr-Met. Moreover, constitutive activation of Ron resulted in activation of the MAP kinase signaling cascade approximately three times lower than that attained by Tpr-Met. However, constitutive activation of Ron did induce a mitogenic-invasive response, causing cell dissociation, motility, and invasion of extracellular matrices. Tpr-Ron also induced formation of long, unbranched tubules in tridimensional collagen gels. These data show that RON has the potential to elicit a motile-invasive rather than a transformed phenotype.status: publishe

    The msp receptor gene (ron) is involved in development of epithelial, bone and neuro-endocrine tissues

    No full text
    We previously showed that the proto-oncogene RON encodes the tyrosine kinase receptor for Macrophage Stimulating Protein (MSP), originally isolated as a chemotactic factor for peritoneal macrophages. To elucidate the biological role of MSP we studied the expression of the Ron receptor in vivo, and the response to the factor in vitro. RON specific transcripts were detectable in mouse liver from early embryonal life (day 12.5 p.c.) through adult life. Adrenal gland, spinal ganglia, skin, lung and--unexpectedly--ossification centers of developing mandible, clavicle and ribs were also positive at later stages (day 13.5-16.5 p.c.). From day 17.5 RON was expressed in the gut epithelium and in a specific area of the central nervous system, corresponding to the nucleus of the hypoglossus. In adult mouse tissues RON transcripts were observed in brain, adrenal glands, gastro-intestinal tract, testis and kidney. Epithelial, osteoclast-like and neuroendocrine cells express the Ron receptor and respond to MSP in vitro. In the neuroendocrine PC12 cell line, while NGF induced growth arrest and morphological differentiation, MSP behaved as a strong mitogen. These findings show that the Ron receptor and its ligand are involved in the development of epithelial tissues, bones, and neuroendocrine derivatives driving cells towards the proliferation program

    Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction

    No full text
    Hepatocyte growth factor (HGF) is a paracrine inducer of morphogenesis and invasive growth in epithelial and endothelial cells. HGF is secreted by mesenchymal cells as an inactive precursor (pro-HGF). The crucial step for HGF activation is the extracellular hydrolysis of the Arg494-Val495 bond, which converts pro-HGF into alpha beta-HGF, the high-affinity ligand for the Met receptor. We previously reported that the urokinase-type plasminogen activator (uPA) activates pro-HGF in vitro. We now show that this is a stoichiometric reaction, and provide evidence for its occurrence in tissue culture. Activation involves the formation of a stable complex between pro-HGF and uPA. This complex was isolated from the in vitro reaction of pure uPA with recombinant pro-HGF, as well as from the membrane of target cells, after sequential addition of uPA and pro-HGF. On the cell membrane, the uPA-HGF complex was bound to the Met receptor. Monocytic cell lines, and primary monocytes after adhesion, activated efficiently pro-HGF both on their surface and in the culture medium. This activation was inhibited by anti-catalytic anti-uPA antibodies, and occurred by a stoichiometric reaction. The stoichiometry of the activation reaction suggests that the biological effects of HGF can be titrated in vivo by the level of uPA activity. Adequate amounts of uPA can be locally provided by the macrophages, which would condition the tissue microenvironment by rendering HGF bioavailable to its target cells
    corecore