437 research outputs found

    Science-Technology-Society (STS): a new paradigm in Science Education

    Get PDF
    publication-status: Publishedtypes: ArticleChanges in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field of science education. The success of science education reform depends on teachers' ability to integrate the philosophy and practices of current programs of science education reform with their existing philosophy. Thus, when considering the STS approach to science education, teacher beliefs about STS implementation require attention. Without this attention, negative beliefs concerning STS implementation and inquiry learning could defeat the reform movements emphasizing STS. This article argues the role of STS in science education and the importance of considering science teachers' beliefs about STS in implementing significant reforms in science education

    The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?

    Get PDF
    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO2) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO2 emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO2 emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO2 emissions

    Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications

    Get PDF
    Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy

    Gene and genon concept: coding versus regulation: A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology

    Get PDF
    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog

    Environmentalism, pre-environmentalism, and public policy

    Full text link
    In the last decade, thousands of new grassroots groups have formed to oppose environmental pollution on the basis that it endangers their health. These groups have revitalized the environmental movement and enlarged its membership well beyond the middle class. Scientists, however, have been unable to corroborate these groups' claims that exposure to pollutants has caused their diseases. For policy analysts this situation appears to pose a choice between democracy and science. It needn't. Instead of evaluating the grassroots groups from the perspective of science, it is possible to evaluate science from the perspective of environmentalism. This paper argues that environmental epidemiology reflects ‘pre-environmentalist’ assumptions about nature and that new ideas about nature advanced by the environmental movement could change the way scientists collect and interpret data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45449/1/11077_2005_Article_BF01006494.pd
    corecore