3 research outputs found

    The public health benefits of insulation retrofits in existing housing in the United States

    Get PDF
    BACKGROUND: Methodological limitations make it difficult to quantify the public health benefits of energy efficiency programs. To address this issue, we developed a risk-based model to estimate the health benefits associated with marginal energy usage reductions and applied the model to a hypothetical case study of insulation retrofits in single-family homes in the United States. METHODS: We modeled energy savings with a regression model that extrapolated findings from an energy simulation program. Reductions of fine particulate matter (PM(2.5)) emissions and particle precursors (SO(2 )and NOx) were quantified using fuel-specific emission factors and marginal electricity analyses. Estimates of population exposure per unit emissions, varying by location and source type, were extrapolated from past dispersion model runs. Concentration-response functions for morbidity and mortality from PM(2.5 )were derived from the epidemiological literature, and economic values were assigned to health outcomes based on willingness to pay studies. RESULTS: In total, the insulation retrofits would save 800 TBTU (8 × 10(14 )British Thermal Units) per year across 46 million homes, resulting in 3,100 fewer tons of PM(2.5), 100,000 fewer tons of NOx, and 190,000 fewer tons of SO(2 )per year. These emission reductions are associated with outcomes including 240 fewer deaths, 6,500 fewer asthma attacks, and 110,000 fewer restricted activity days per year. At a state level, the health benefits per unit energy savings vary by an order of magnitude, illustrating that multiple factors (including population patterns and energy sources) influence health benefit estimates. The health benefits correspond to 1.3billionperyearinexternalitiesaverted,comparedwith1.3 billion per year in externalities averted, compared with 5.9 billion per year in economic savings. CONCLUSION: In spite of significant uncertainties related to the interpretation of PM(2.5 )health effects and other dimensions of the model, our analysis demonstrates that a risk-based methodology is viable for national-level energy efficiency programs

    Ancillary human health benefits of improved air quality resulting from climate change mitigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p
    corecore