534 research outputs found

    The Maximal Pore Size of Hydrophobic Microporous Membranes Does Not Fully Characterize the Resistance to Plasma Breakthrough of Membrane Devices for Extracorporeal Blood Oxygenation

    Get PDF
    open4Extracorporeal membrane oxygenation (ECMO) in blood-outside devices equipped with hydrophobic membranes has become routine treatment of respiratory or cardiac failure. In spite of membrane hydrophobicity, significant amounts of plasma water may form in the gas compartment during treatment, an event termed plasma water breakthrough. When this occurs, plasma water occludes some gas pathways and ultimately cripples the oxygenator gas exchange capacity requiring its substitution. This causes patient hemodilution and increases the activation of the patient's immune system. On these grounds, the resistance to plasma water breakthrough is regarded as an important feature of ECMO devices. Many possible events may explain the occurrence of plasma breakthrough. In spite of this, the resistance to plasma breakthrough of ECMO devices is commercially characterized only with respect to the membrane maximal pore size, evaluated by the bubble pressure method or by SEM analysis of membrane surfaces. The discrepancy between the complexity of the events causing plasma breakthrough in ECMO devices (hence determining their resistance to plasma breakthrough), and that claimed commercially has caused legal suits on the occasion of the purchase of large stocks of ECMO devices by large hospitals or regional institutions. The main aim of this study was to identify some factors that contribute to determining the resistance to plasma breakthrough of ECMO devices, as a means to minimize litigations triggered by an improper definition of the requirements of a clinically efficient ECMO device. The results obtained show that: membrane resistance to breakthrough should be related to the size of the pores inside the membrane wall rather than at its surface; membranes with similar nominal maximal pore size may exhibit pores with significantly different size distribution; membrane pore size distribution rather than the maximal pore size determines membrane resistance to breakthrough; the presence of surfactants in the patient's blood (e.g., lipids, alcohol, etc.) may significantly modify the intrinsic membrane resistance to breakthrough, more so the higher the surfactant concentration. We conclude that the requirements of ECMO devices in terms of resistance to plasma breakthrough ought to account for all these factors and not rely only on membrane maximal pore size.openFragomeni Gionata, Terzini Mara, Comite Antonio, Catapano GerardoFragomeni, Gionata; Terzini, Mara; Comite, Antonio; Catapano, Gerard

    Monitoring freeze-thaw state by means of GNSS reflectometry. An analysis of TechDemoSat-1 data

    Get PDF
    The article of the freeze/thaw dynamic of high-latitude Earth surfaces is extremely important and informative for monitoring the carbon cycle, the climate change, and the security of infrastructures. Current methodologies mainly rely on the use of active and passive microwave sensors, while very few efforts have been devoted to the assessment of the potential of observations based on signals of opportunity. This article aims at assessing the performance of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) for high-spatial and highoral resolution monitoring of the Earth-surface freeze/thaw state. To this aim, reflectivity values derived from the TechDemoSat-1 (TDS-1) data have been collected and elaborated, and thus compared against the soil moisture active passive (SMAP) freeze/thaw information. Shallow subsurface soil temperature values recorded by a network of in situ stations have been considered as well. Even if an extensive and timeliness cross availability of both types of experimental data is limited by the spatial coverage and density of TDS-1 observations, the proposed analysis clearly indicates a significant seasonal cycle in the calibrated reflectivity. This opens new perspectives for the bistatic L-band high-resolution satellite monitoring of the freeze/thaw state, as well as to support the development of next-generation of GNSS-R satellite missions designed to provide enhanced performance and improved temporal and spatial coverage over high latitude areas

    Efficiency of an Air Cleaner Device in Reducing Aerosol Particulate Matter (PM) in Indoor Environments

    Get PDF
    Abstract: Indoor air quality (IAQ) in household environments is mandatory since people spend most of their time in indoor environments. In order to guarantee a healthy environment, air purification devices are often employed. In the present work, a commercial household vacuum cleaner has been tested in order to verify its eciency in reducing the mass concentration and particle number of aerosol particulate matter (PM). The eciency has been tested measuring, while the instrument was working, PM10 (particles with aerodynamic diameter less than 10 m), PM2.5 (particles with aerodynamic diameter less than 2.5 m), PM1 (particles with aerodynamic diameter less than 1 m), and 7 size-fractions in the range between 0.3 and >10 m. Measurements have been carried out by means of a portable optical particle counter instrument and simulating the working conditions typical of a household environment. It has been found that the tested commercial device significantly reduces both PM concentrations and particle number, especially in the finest fraction, i.e., particles in the range 0.3\u20130.5 m, allowing an improvement of indoor air quality

    The potential mechanism of black crust development on the historic buildings in Cairo and Venice

    Get PDF
    The development of black crusts on natural stones of historic buildings is mainly related to the surrounded polluted atmosphere. The blackening of surfaces is caused, in fact, by the accumulation of air pollutants produced by human activity, especially carbon particles originating from the incomplete combustion of fossil fuel. Investigations of the chemical composition of such layers in the monuments can be the basis for planning suitable strategies for the protection and conservation of the built cultural heritage. Cairo (Egypt) and Venice (Italy) are two cities with a large amount of cultural heritage buildings; moreover, they suffer high level of air pollution. Black crust with the hosted stones from different sites in Historic Cairo, as well as samples of different archaeological sites in Venice city, were collected and analyzed by using several techniques: polarizing optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS), infrared spectroscopic techniques (FT-IR) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS). The characterization of such samples provided information on the chemical composition of black crusts, the state of conservation of the substrates and the crust-stone interactions. The chemical study highlighted a different pattern of elements within the two cities. Regarding the black crusts of Cairo, results suggest that the air pollution in Cairo is mainly related to vehicular traffic. Indeed, in the city there is high vehicular traffic almost 24 h a day and the direct impact of vehicle emissions is particularly severe. Samples from the Venice show different composition in terms of heavy metals with respect to Cairo that can be explained with the emission from several industries sited in the near industrial center of Porto Marghera and Island of Murano. Moreover, the fuels used for marine transportation, which is abundant into the area, have a slight different fingerprinting in terms of metals with respect to the vehicles

    Autologous bone marrow mononuclear cells (Bmmcs) for the treatment of uncomplicated grade 2 ununited anconeal process (uap) in six dogs: Preliminary results

    Get PDF
    The aim of this study was to report the results of autologous bone marrow mononuclear cell (BMMC) transplantation as a minimally invasive treatment for grade 2 UAP in dogs. This was an observational case series on six German shepherd dogs affected by grade 2 UAP as defined according to their clinical condition as well as radiographic and CT findings. Bone marrow was collected from the iliac crest and the mononuclear fraction was separated with density gradient centrifugation. Cells were suspended in fibrin glue before BMMC administration and implanted via transcutaneous injection under IB or CT guidance, using a spinal needle directly inserted into the ossification centre between the anconeal process and the olecranon. Clinical and radiographic follow-up was performed for up to 6 months. Microradiographic assessment was performed on one dog that died of other causes. A progressive reduction of pain within 3 weeks after BMMC administration was observed in all dogs, with gradually increased weight bearing on the affected limb. Radiographic and CT follow-up revealed the progressive fusion of the ossification centre at 90 days without any signs of secondary OA. The examination of microradiographs showed newly formed bone tissue in which a residue of calcified cartilage was present at the site of BMMC implantation. On the basis of these results, BMMC therapy for grade 2 UAP may be considered to be an effective and minimally invasive treatment option for dogs

    Temporomandibular disorders and oral features in idiopathic inflammatory myopathies (Iims) patients: An observational study

    Get PDF
    Aim: Inflammatory idiopathic myopathies (IIMs) are inflammatory processes affecting skeletal musculature and extramuscular organs. Temporomandibular disorders (TMD) involve jaw muscles and temporomandibular joint. The aim of this observational study was to investigate the prevalence of the main TMD symptoms and signs as well as oral implications in IIM patients. Methods: The study group included 54 patients (42 women and 12 men), 22 of whom affected by dermatomyositis (DM), 29 by polymyositis (PM) and 3 by inclusion body myositis (IBM). A group of 54 patients not affected by this disease, served as CG. Oral and TMD signs and symptoms were evaluated by means of a questionnaire and through clinical examination. Results: About oral symptoms, the study group complained more frequently dysgeusia, with loss of taste or unpleasant taste (p<0.0001) and feeling of burning mouth (9.4% versus 0 controls). Xerostomia was more prevalent in the study group respect to the CG (p<0.0001). Dysphagia was reported by 48.1% of IIM patients while was absent in CG (p<0.0001). About oral signs, cheilitis (p<0.05) and oral ulcers (p<0.05) were significantly more frequent in CG. As regard to TMD symptoms, arthralgia and tinnitus didn’t showed significant differences between the two groups, while neck/shoulders and masticatory muscle pain was significantly more referred in IIM patients than in the CG (p<0.05). About TMJ signs, sounds were overlapping in the two groups: click=11.1% in both IIM patients and CG (p<0.05), crepitation in 11.1% of IIM and 9.3% of controls (p>0.05). No significant difference was detected about deflection (9.3%, p>0.05), while deviation was wider in CG (p>0.05). Active opening and lateralities showed no significant differences, while endfeel was significantly increased in IIM group for a higher presence of muscular contracture. Bruxism was present only in CG. Conclusion: The data collected from this observational study seem to support the existence of a relationship between the prevalence of TMD symptoms and signs as well as oral features in patients with myositis. A remarkable reduction of salivary flow and dysphagia were more frequent and severe in IIM patients, as well as muscle contracture and myofacial pain evoked by palpation, this result being highly significant

    Study of The Corrosion Processes On Roman And Byzantine Glasses From Northern Tunisia

    Get PDF
    The present investigation focuses on some glass objects among those discovered in an area around the ancient city of Thugga in northern Tunisia, particularly flourishing during the Roman and Byzantine periods (1). The Late Roman-Byzantine time is not characterised by elaborate vessel shapes derived from precious metal prototypes, but rather by simpler multifunctional forms, as beakers, goblets, and dishes with similar features in the whole Mediterranean world. Also the glass composition seems to change between the 4th and the 5th century, turning to a yellowish-green or olive green colouration of the glass instead of the typical Roman blue-greenish colouration of earlier times. This new glass colouration varies further drastically in the 7th century, when a characteristic light blue-turquoise glass becomes the most widespread. A complete chemical characterization of these objects was carried out in a previous study (2) aimed to investigate the production technology including the chromophores responsible for the different shades. In the present work we have investigated the degradation and corrosion processes affecting some of these shards. It is worth to note that to ascertain the composition of the glass surfaces the analyses have been carried out by means of non-destructive techniques such as XPS (X-ray photoelectron spectroscopy), SEM-EDX (scanning electron microscopy coupled with energy dispersive X-ray analysis) and laser-ablation ICP-MS ((Inductively Coupled Plasma \u2013 Mass Spectrometry)

    Performance evaluation of a commercial protective coating through field-exposure tests on three stone substrates

    Get PDF
    In the last decades, there have been several studies on Cultural Heritage regarding the performance of protective and consolidating coatings for the prevention of decay. A coating must have several characteristics such as efficiency, breathability, and must be durable and reversible. In this research work, the performance of a commercial protective product (Fosbuild FBLE 200) was evaluated. This coating is composed of a TiO2 nanopowder dispersed in an aqueous solution of an acrylic polymer. The product, which exhibits depolluting, antimicrobial, water-repellent and self-cleaning properties, has been applied on three different lithotypes: Carrara marble, Noto stone, and Comiso stone. Field-exposure tests were carried out in two different outdoor environments (Catania and Palermo) in order to assess its suitability. Promising results were obtained for the Carrara marble after one year of exposure; however, a decrease in effectiveness was observed at the end of the second year

    Efficacy of High-Ozonide Oil in Prevention of Cancer Relapses Mechanisms and Clinical Evidence

    Get PDF
    Background: Cancer tissue is characterized by low oxygen availability triggering neo angiogenesis and metastatisation. Accordingly, oxidation is a possible strategy for counteracting cancer progression and relapses. Previous studies used ozone gas, administered by invasive methods, both in experimental animals and clinical studies, transiently decreasing cancer growth. This study evaluated the effect of ozonized oils (administered either topically or orally) on cancer, exploring triggered molecular mechanisms. Methods: In vitro, in lung and glioblastoma cancer cells, ozonized oils having a high ozonide content suppressed cancer cell viability by triggering mitochondrial damage, intracellular calcium release, and apoptosis. In vivo, a total of 115 cancer patients (age 58 \ub1 14 years; 44 males, 71 females) were treated with ozonized oil as complementary therapy in addition to standard chemo/radio therapeutic regimens for up to 4 years. Results: Cancer diagnoses were brain glioblastoma, pancreas adenocarcinoma, skin epithelioma, lung cancer (small and non-small cell lung cancer), colon adenocarcinoma, breast cancer, prostate adenocarcinoma. Survival rate was significantly improved in cancer patients receiving HOO as integrative therapy as compared with those receiving standard treatment only. Conclusions: These results indicate that ozonized oils at high ozonide may represent an innovation in complementary cancer therapy worthy of further clinical studies
    • …
    corecore