1,012 research outputs found
Jamming transition in a two-dimensional open granular pile with rolling resistance
We present a molecular dynamics study of the jamming/unjamming transition in
two-dimensional granular piles with open boundaries. The grains are modeled by
viscoelastic forces, Coulomb friction and resistance to rolling. Two models for
the rolling resistance interaction were assessed: one considers a constant
rolling friction coefficient, and the other one a strain dependent coefficient.
The piles are grown on a finite size substrate and subsequently discharged
through an orifice opened at the center of the substrate. Varying the orifice
width and taking the final height of the pile after the discharge as the order
parameter, one can devise a transition from a jammed regime (when the grain
flux is always clogged by an arch) to a catastrophic regime, in which the pile
is completely destroyed by an avalanche as large as the system size. A finite
size analysis shows that there is a finite orifice width associated with the
threshold for the unjamming transition, no matter the model used for the
microscopic interactions. As expected, the value of this threshold width
increases when rolling resistance is considered, and it depends on the model
used for the rolling friction.Comment: 9 pages, 6 figure
Experimental validation of nonextensive scaling law in confined granular media
In this letter, we address the relationship between the statistical
fluctuations of grain displacements for a full quasistatic plane shear
experiment, and the corresponding anomalous diffusion exponent, . We
experimentally validate a particular case of the so-called Tsallis-Bukman
scaling law, , where is obtained by fitting the
probability density function (PDF) of the measured fluctuations with a
-Gaussian distribution, and the diffusion exponent is measured independently
during the experiment. Applying an original technique, we are able to evince a
transition from an anomalous diffusion regime to a Brownian behavior as a
function of the length of the strain-window used to calculate the displacements
of grains in experiments. The outstanding conformity of fitting curves to a
massive amount of experimental data shows a clear broadening of the fluctuation
PDFs as the length of the strain-window decreases, and an increment in the
value of the diffusion exponent - anomalous diffusion. Regardless of the size
of the strain-window considered in the measurements, we show that the
Tsallis-Bukman scaling law remains valid, which is the first experimental
verification of this relationship for a classical system at different diffusion
regimes. We also note that the spatial correlations show marked similarities to
the turbulence in fluids, a promising indication that this type of analysis can
be used to explore the origins of the macroscopic friction in confined granular
materials.Comment: 8 pages 4 figure
Low temperature shape relaxation of 2-d islands by edge diffusion
We present a precise microscopic description of the limiting step for low
temperature shape relaxation of two dimensional islands in which activated
diffusion of particles along the boundary is the only mechanism of transport
allowed. In particular, we are able to explain why the system is driven
irreversibly towards equilibrium. Based on this description, we present a
scheme for calculating the duration of the limiting step at each stage of the
relaxation process. Finally, we calculate numerically the total relaxation time
as predicted by our results and compare it with simulations of the relaxation
process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
Scale separation in granular packings: stress plateaus and fluctuations
It is demonstrated, by numerical simulations of a 2D assembly of polydisperse
disks, that there exists a range (plateau) of coarse graining scales for which
the stress tensor field in a granular solid is nearly resolution independent,
thereby enabling an `objective' definition of this field. Expectedly, it is not
the mere size of the the system but the (related) magnitudes of the gradients
that determine the widths of the plateaus. Ensemble averaging (even over
`small' ensembles) extends the widths of the plateaus to sub-particle scales.
The fluctuations within the ensemble are studied as well. Both the response to
homogeneous forcing and to an external compressive localized load (and gravity)
are studied. Implications to small solid systems and constitutive relations are
briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the
published versio
Guidelines for initiation of anti-tumour necrosis factor therapy in rheumatoid arthritis: similarities and differences across Europe.
Contains fulltext :
80544.pdf (publisher's version ) (Closed access
- …