1 research outputs found

    Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by simultaneous heat and light detection

    Get PDF
    The CUORE project began recently a search for neutrinoless double-beta decay (0νββ0\nu\beta\beta) of 130^{130}Te with a O\mathcal{O}(1 ton) TeO2_2 bolometer array. In this experiment, the background suppression relies essentially on passive shielding, material radiopurity and anti-coincidences. The lack of particle identification in CUORE makes α\alpha decays at the detector surface the dominant background, at the level of \sim0.01 counts/(keV kg y) in the region of interest (QQ-value of 0νββ0\nu\beta\beta of the order of 2.5 MeV). In the present work we demonstrate, for the first time with a CUORE-size (5×\times5×\times5 cm) TeO2_2 bolometer and using the same technology as CUORE for the readout of the bolometric signals, an efficient α\alpha particle discrimination (99.9\%) with a high acceptance of the 0νββ0\nu\beta\beta signal (about 96\%). This unprecedented result was possible thanks to the superior performance (10 eV RMS baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70 eV) light signal dominated by γ\gamma(β\beta)-induced Cherenkov radiation in the TeO2_2 detector. The obtained results represent a major breakthrough towards the TeO2_2-based version of CUPID, a ton-scale cryogenic 0νββ0\nu\beta\beta experiment proposed as a follow-up to CUORE with particle identification
    corecore