435 research outputs found

    Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation

    Get PDF
    Controlled environment agriculture in greenhouse is a promising solution for meeting the increasing food demand of world population. The accurate control of the indoor environmental conditions proper of greenhouses enhances high crop productivity but, contemporarily, it entails considerable energy consumption due to the adoption of mechanical systems. This work presents a new modelling approach for estimating the energy consumption for climate control of mechanically ventilated greenhouses. The novelty of the proposed energy model lies in its integrated approach in simulating the greenhouse dynamics, considering the dynamic thermal and hygric behaviour of the building and the dynamic response of the cultivated crops to the variation of the solar radiation. The presented model simulates the operation of the systems and the energy performance, considering also the variable angular speed fans that are a new promising energy-efficient technology for this productive sector. The main outputs of the model are the hourly thermal and electrical energy use for climate control and the main indoor environmental conditions. The presented modelling approach was validated against a dataset acquired in a case study of a new fully mechanically controlled greenhouse during a long-term monitoring campaign. The present work contributes to increase the knowledge about the dynamics and the energy consumption of greenhouses, and it can be a valuable decision support tool for industry, farmers, and researchers to properly address an energy efficiency optimisation in mechanically ventilated greenhouses to reach the overall objective of decreasing the rising energy consumption of the agricultural sector

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    SIMPLE SUMMARY: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. ABSTRACT: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Get PDF
    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle

    The health impact of hazardous waste landfills and illegal dumps contaminated sites: An epidemiological study at ecological level in Italian Region

    Get PDF
    Background and aim: The implementation of idoneous management of hazardous waste, in contrast to illegal practices, is one of the environment and health priorities of the WHO. The aim of the present study, based on a collaborative agreement between the Italian National Health Institute and a Prosecution Office located in Naples North, was to evaluate the health effects of illegal landfills and burning of urban and hazardous waste in the territory of the Prosecution Office. Methods: The municipalities included in the study territory were investigated with respect to the regional population. Regression analyses were performed in the study area between four classes of an environmental municipal indicator of waste risk (MRI) previously defined, computing the relative risks (RRs) in 2–4 MRI classes, with respect to the first MRI class (the least impacted). The prevalence of reproductive outcomes and cause-specific mortality and hospitalization were analyzed in the general population and in the 0–19-year-old population using SAS software. Results: An increase of mortality and hospitalization risk in both the genders of the whole area, with respect to regional population, were found for overall all cancer cases, cancer of the stomach, the liver, the lung and the kidney, and ischemic heart diseases. An increase of mortality for leukemias in the 0-19-year-old population and in hospitalization risk for certain conditions originating in the perinatal period were observed. Correlation between MRI and the risk of mortality from breast tumors in women (MRI class 2: RR = 1.06; MRI class 3: RR = 1.15; MRI class 4: RR = 1.11) and between MRI and the risk of hospitalization from testis tumors (MRI class 2: RR = 1.25; MRI class 3: RR = 1.31; MRI class 4: RR = 1.32) were found. The hospitalization risk from breast tumors and asthma exceeded significantly in both genders of three and four MRI classes. Among the 0-19-year-old population, correlation between MRI and hospitalization from leukemias (MRI class 2: RR = 1.48; MRI class 3: RR = 1.60; MRI class 4: RR = 1.41) and between MRI and the prevalence of preterm birth (MRI class 2: RR = 1.17; MRI class 3: RR = 1.08; MRI class 4: RR = 1.25) were found. Conclusion: A correlation between health outcomes and the environmental pressure by uncontrolled waste sites was found. Notwithstanding the limitation of the study, the results promote implementing the actions of environmental remediation and the prosecution of illegal practices

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure
    • …
    corecore