733 research outputs found

    Combined Endo-restorative Treatment of a Traumatized Central Incisor: A Five-year Follow-up

    Get PDF
    Purpose: The management of complicated crown-root fractures is challenging for endodontic restoration. The present case describes a patient who sustained trauma to the maxillary right central incisor. Materials and Methods: Clinical and radiographic examination showed a complicated crown-root fracture and incomplete root development with periapical radiolucency and inadequate endodontic treatment with overfilling. Orthograde retreatment with MTA apical closure combined with a microsurgical approach to remove of extruded material was performed. Coronal sealing was accomplished with a direct adhesive restoration and marginal relocation. Results: A 5-year follow-up showed complete healing of the periapical lesion and correct preservation of function and esthetic parameters. Conclusion: A modern minimally invasive treatment protocol allows the maximum conservation of residual dental tissues

    Cooperative Agricultural Operations of Aerial and Ground Unmanned Vehicles

    Get PDF
    Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Autonomous ground and aerial vehicle can lead to favorable improvements in management by performing in-field tasks in a time-effective way. Greater benefits can be achieved by allowing cooperation and collaborative action among Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs). A multi-phase approach is here proposed, where each unmanned vehicle involved has been conceived and will be designed to implement innovative solutions for automated navigation and infield operations within a complex irregular and unstructured scenario as vineyards in sloped terrains

    Cooperation of unmanned systems for agricultural applications: A theoretical framework

    Get PDF
    Agriculture 4.0 comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management with the objective of optimising production by accounting for variabilities and uncertainties within agricultural systems. Autonomous ground and aerial vehicles can lead to favourable improvements in management by performing in-field tasks in a time-effective way. In particular, greater benefits can be achieved by allowing cooperation and collaborative action among unmanned vehicles, both aerial and ground, to perform in-field operations in precise and time-effective ways. In this work, the preliminary and crucial step of analysing and understanding the technical and methodological challenges concerning the main problems involved is performed. An overview of the agricultural scenarios that can benefit from using collaborative machines and the corresponding cooperative schemes typically adopted in this framework are presented. A collection of kinematic and dynamic models for different categories of autonomous aerial and ground vehicles is provided, which represents a crucial step in understanding the vehicles behaviour when full autonomy is desired. Last, a collection of the state-of-the-art technologies for the autonomous guidance of drones is provided, summarising their peculiar characteristics, and highlighting their advantages and shortcomings with a specific focus on the Agriculture 4.0 framework. A companion paper reports the application of some of these techniques in a complete case study in sloped vineyards, applying the proposed multi-phase collaborative scheme introduced here

    Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation

    Get PDF
    Controlled environment agriculture in greenhouse is a promising solution for meeting the increasing food demand of world population. The accurate control of the indoor environmental conditions proper of greenhouses enhances high crop productivity but, contemporarily, it entails considerable energy consumption due to the adoption of mechanical systems. This work presents a new modelling approach for estimating the energy consumption for climate control of mechanically ventilated greenhouses. The novelty of the proposed energy model lies in its integrated approach in simulating the greenhouse dynamics, considering the dynamic thermal and hygric behaviour of the building and the dynamic response of the cultivated crops to the variation of the solar radiation. The presented model simulates the operation of the systems and the energy performance, considering also the variable angular speed fans that are a new promising energy-efficient technology for this productive sector. The main outputs of the model are the hourly thermal and electrical energy use for climate control and the main indoor environmental conditions. The presented modelling approach was validated against a dataset acquired in a case study of a new fully mechanically controlled greenhouse during a long-term monitoring campaign. The present work contributes to increase the knowledge about the dynamics and the energy consumption of greenhouses, and it can be a valuable decision support tool for industry, farmers, and researchers to properly address an energy efficiency optimisation in mechanically ventilated greenhouses to reach the overall objective of decreasing the rising energy consumption of the agricultural sector

    High incidence of classic Kaposi's sarcoma in Mantua, Po Valley, Northern Italy (1989–1998)

    Get PDF
    The incidence of classic Kaposi's sarcoma was estimated in the province of Mantua, Po Valley, Northern Italy, yielding age-standardized rates of 2.5/100 000 men and 0.7/100 000 women (1989–98). Elevated rates in the rural zone of Viadana/Sabbioneta (5.0/100 000 men and 2.8/100 000 women) are among the highest so far reported for Italian communities. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Nanoindentation and Raman spectroscopy measurements on dual-cure luting cement for dental conservative restoration

    Get PDF
    The employment of innovative all-ceramic materi-als and adhesive cement, as well as the development of new bonding procedures, allow clinicians to use minimally invasive approaches in conservative restorations. In particular, dual-cure cement allows for obtaining higher aesthetic and functional results. However, the reduced light transmission through ceramic materials could prevent the proper curing and affect the adhesion of these materials to the tooth surface. In this context, the development of an accurate measurement methodology to assess the extent of polymerization of dental resin-based luting cement and to correlate the conversion degree with the mechanical properties is of particular importance from the clinical and scientific point of view. A measurement approach that exploits Raman Spectroscopy and nano-hardness measurements is hereby proposed. In particular, in this study, two different light-curing protocols are employed on a dual-cure luting cement, usually used for the full-crown restoration of single-rooted teeth. The effect of different times and tack-curing steps on the polymerization shrinkage of resin-based luting cement is investigated. The pre-liminary results allow concluding that both curing protocols lead to a good polymerization, without significant differences in the degree of conversion along the cement-tooth interfacial surface, as proved by the almost constant ratio of the Raman vibration characteristic peaks. However, the nanoindentation modulus was lower in the case of the tack-cured protocol

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    SIMPLE SUMMARY: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. ABSTRACT: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Effect of royal jelly on experimental colitis induced by acetic acid and alteration of mast cell distribution in the colon of rats

    Get PDF
    This study investigated the effects of royal jelly (RJ) on acetic acid-induced colitis in rats. Twenty adult female Wistar albino rats were divided into four treatment groups of 5 animals each, including a control group (Group I); Group II was treated orally with RJ (150 mg kg−1 body weight); Group III had acetic acid-induced colitis; and Group IV had acetic acid-induced colitis treated orally with RJ (150 mg kg−1 body weight) for 4 weeks. Colitis was induced by intracolonic instillation of 4% acetic acid; the control group received physiological saline (10 mL kg−1). Colon samples were obtained under deep anaesthesia from animals in all groups. Tissues were fixed in 10% formalin neutral buffer solution for 24 h and embedded in paraffin. Six-micrometre-thick sections were stained with Mallory’s triple stain and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for Mast Cells). RJ was shown to protect the colonic mucosa against the injurious effect of acetic acid. Colitis (colonic damage) was confirmed histomorphometrically as significant increases in the number of mast cells (MC) and colonic erosions in rats with acetic acid-induced colitis. The RJ treatment significantly decreased the number of MC and reduced the area of colonic erosion in the colon of RJ-treated rats compared with rats with untreated colitis. The results suggest that oral treatment with RJ could be used to treat colitis

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure
    • …
    corecore