35 research outputs found
Rats distinguish between absence of events and lack of evidence in contingency learning.
The goal of three experiments was to study whether rats are aware of the difference between absence of events and lack of evidence. We used a Pavlovian extinction paradigm in which lights consistently signaling sucrose were suddenly paired with the absence of sucrose. The crucial manipulation involved the absent outcomes in the extinction phase. Whereas in the Cover conditions, access to the drinking receptacle was blocked by a metal plate, in the No Cover conditions, the drinking receptacle was accessible. The Test phase showed that in the Cover conditions, the measured expectancies of sucrose were clearly at a higher level than in the No Cover conditions. We compare two competing theories potentially explaining the findings. A cognitive theory interprets the observed effect as evidence that the rats were able to understand that the cover blocked informational access to the outcome information, and therefore the changed learning input did not necessarily signify a change of the underlying contingency in the world. An alternative associationist account, renewal theory, might instead explain the relative sparing of extinction in the Cover condition as a consequence of context change. We discuss the merits of both theories as accounts of our data and conclude that the cognitive explanation is in this case preferred
Chemotherapy followed by low dose radiotherapy in childhood Hodgkin's disease: retrospective analysis of results and prognostic factors
PURPOSE: To report the treatment results and prognostic factors of childhood patients with Hodgkin's disease treated with chemotherapy (CT) followed by low dose radiotherapy (RT). PATIENTS AND METHODS: This retrospective series analyzed 166 patients under 18 years old, treated from January 1985 to December 2003. Median age was 10 years (range 2–18). The male to female ratio was 2,3 : 1. Lymphonode enlargement was the most frequent clinical manifestation (68%), and the time of symptom duration was less than 6 months in 55% of the patients. In histological analysis Nodular Sclerosis was the most prevalent type (48%) followed by Mixed Celularity (34.6%). The staging group according Ann Arbor classification was: I (11.7%), II (36.4%), III (32.1%) and IV (19.8%). The standard treatment consisted of chemotherapy multiple drug combination according the period of treatment protocols vigent: ABVD in 39% (n-65) of the cases, by VEEP in 13 %(n-22), MOPP in 13 %(n-22), OPPA-13 %(n-22) and ABVD/OPPA in 22 %(n-33). Radiotherapy was device to all areas of initial presentation of disease. Dose less or equal than 21 Gy was used in 90.2% of patients with most part of them (90%) by involved field (IFRT) or mantle field. RESULTS: The OS and EFS in 10 years were 89% and 87%. Survival according to clinical stage as 94.7%, 91.3%, 82.3% and 71% for stages I to IV(p = 0,005). The OS was in 91.3% of patients who received RT and in 72.6% of patients who did not (p = 0,003). Multivariate analysis showed presence of B symptoms, no radiotherapy and advanced clinical stage to be associated with a worse prognosis. CONCLUSION: This data demonstrating the importance of RT consolidation with low dose and reduced volume, in all clinical stage of childhood HD, producing satisfactory ten years OS and EFS. As the disease is highly curable, any data of long term follow-up should be presented in order to better direct therapy, and to identify groups of patients who would not benefit from radiation treatment
Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish
Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
Safety out of control: dopamine and defence
We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values
