1,265 research outputs found

    Annual Report 1998. Chemical Structure and Dynamics

    Get PDF
    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE)

    Hole and Electron Contributions to the Transport Properties of Ba(Fe_(1-x)Ru_x)_2As_2 Single Crystals

    Full text link
    We report a systematic study of structural and transport properties in single crystals of Ba(Fe_(1-x)Ru_x)_2As_2 for x ranging from 0 to 0.5. The isovalent substitution of Fe by Ru leads to an increase of the a parameter and a decrease of the c parameter, resulting in a strong increase of the AsFeAs angle and a decrease of the As height above the Fe planes. Upon Ru substitution, the magnetic order is progressively suppressed and superconductivity emerges for x > 0.15, with an optimal Tc ~ 20K at x = 0.35 and coexistence of magnetism and superconductivity between these two Ru contents. Moreover, the Hall coefficient RH which is always negative and decreases with temperature in BaFe2As2, is found to increase here with decreasing T and even change sign for x > 0.15. For x_Ru = 0.35, photo-emission studies have shown that the number of holes and electrons are similar with n_e = n_h ~ 0.11, that is twice larger than found in BaFe2As2 [1]. Using this estimate, we find that the transport properties of Ba(Fe_0.65Ru_0.35)_2As_2 can be accounted for by the conventional multiband description for a compensated semi-metal. In particular, our results show that the mobility of holes is strongly enhanced upon Ru addition and overcomes that of electrons at low temperature when x_Ru > 0.15.Comment: new version with minor correction

    Suppressed antinodal coherence with a single d-wave superconducting gap leads to two energy scales in underdoped cuprates

    Full text link
    Conventional superconductors are characterized by a single energy scale, the superconducting gap, which is proportional to the critical temperature Tc . In hole-doped high-Tc copper oxide superconductors, previous experiments have established the existence of two distinct energy scales for doping levels below the optimal one. The origin and significance of these two scales are largely unexplained, although they have often been viewed as evidence for two gaps, possibly of distinct physical origins. By measuring the temperature dependence of the electronic Raman response of Bi2Sr2CaCu2O8+d (Bi-2212) and HgBa2CuO4+d (Hg-1201) crystals with different doping levels, we establish that these two scales are associated with coherent excitations of the superconducting state which disappears at Tc. Using a simple model, we show that these two scales do not require the existence of two gaps. Rather, a single d-wave superconducting gap with a loss of Bogoliubov quasiparticle spectral weight in the antinodal region is shown to reconcile spectroscopic and transport measurements.Comment: 3 figure

    Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    Full text link
    We explored by electronic Raman scattering the superconducting state of Bi-2212 single crystal by performing a fine tuned doping study. We found three distinct energy scales in A1g, B1g and B2g symmetries which show three distinct doping dependencies. Above p=0.22 the three energies merge, below p=0.12, the A1g scale is no more detectable while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with under-doping while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be an universal feature of hole-doped cuprates. We propose that the non trivial doping dependence of the three scales originates from Fermi surface topology changes and reveals competing orders inside the superconducting dome.Comment: 6 pages, 5 figure

    Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta}

    Full text link
    We study the temperature-dependent electronic B1g Raman response of a slightly under-doped single crystal HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta} with a superconducting critical temperature Tc=122 K. Our main finding is that the superconducting pair-breaking peak is associated with a dip on its higher-energy side, disappearing together at Tc. This result hints at an unconventional pairing mechanism, whereas spectral weight lost in the dip is transferred to the pair-breaking peak at lower energies. This conclusion is supported by cellular dynamical mean-field theory on the Hubbard model, which is able to reproduce all the main features of the B1g Raman response and explain the peak-dip behavior in terms of a nontrivial relationship between the superconducting and the pseudo gaps.Comment: 7 pages 4 figure

    Infrared phonon dynamics of multiferroic BiFeO3 single crystal

    Full text link
    We discuss the first infrared reflectivity measurement on a BiFeO3 single crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon modes are fully and unambiguously determined. The frequencies of the 4 A1 c-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency E mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.Comment: 5 pages (figures included

    Spin Dynamics in Cuprates: Optical Conductivity of HgBa2CuO4

    Full text link
    The electron-boson spectral density function I^2ChiOmega responsible for carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K) is calculated from new data on the optical scattering rate. A maximum entropy technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also inverted and these new results are put in the context of other known cases. All spectra (with two notable exceptions) show a peak at an energy (Omega_r) proportional to the superconducting transition temperature Omega_r ~= 6.3 kB.Tc. This charge channel relationship follows closely the magnetic resonance seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The amplitudes of both peaks decrease strongly with increasing temperature. In some cases, the peak at Omega_r is weak and the spectrum can have additional maxima and a background extending up to several hundred meV
    corecore