1,267 research outputs found
Annual Report 1998. Chemical Structure and Dynamics
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE)
Hole and Electron Contributions to the Transport Properties of Ba(Fe_(1-x)Ru_x)_2As_2 Single Crystals
We report a systematic study of structural and transport properties in single
crystals of Ba(Fe_(1-x)Ru_x)_2As_2 for x ranging from 0 to 0.5. The isovalent
substitution of Fe by Ru leads to an increase of the a parameter and a decrease
of the c parameter, resulting in a strong increase of the AsFeAs angle and a
decrease of the As height above the Fe planes. Upon Ru substitution, the
magnetic order is progressively suppressed and superconductivity emerges for x
> 0.15, with an optimal Tc ~ 20K at x = 0.35 and coexistence of magnetism and
superconductivity between these two Ru contents. Moreover, the Hall coefficient
RH which is always negative and decreases with temperature in BaFe2As2, is
found to increase here with decreasing T and even change sign for x > 0.15. For
x_Ru = 0.35, photo-emission studies have shown that the number of holes and
electrons are similar with n_e = n_h ~ 0.11, that is twice larger than found in
BaFe2As2 [1]. Using this estimate, we find that the transport properties of
Ba(Fe_0.65Ru_0.35)_2As_2 can be accounted for by the conventional multiband
description for a compensated semi-metal. In particular, our results show that
the mobility of holes is strongly enhanced upon Ru addition and overcomes that
of electrons at low temperature when x_Ru > 0.15.Comment: new version with minor correction
Suppressed antinodal coherence with a single d-wave superconducting gap leads to two energy scales in underdoped cuprates
Conventional superconductors are characterized by a single energy scale, the
superconducting gap, which is proportional to the critical temperature Tc . In
hole-doped high-Tc copper oxide superconductors, previous experiments have
established the existence of two distinct energy scales for doping levels below
the optimal one. The origin and significance of these two scales are largely
unexplained, although they have often been viewed as evidence for two gaps,
possibly of distinct physical origins. By measuring the temperature dependence
of the electronic Raman response of Bi2Sr2CaCu2O8+d (Bi-2212) and HgBa2CuO4+d
(Hg-1201) crystals with different doping levels, we establish that these two
scales are associated with coherent excitations of the superconducting state
which disappears at Tc. Using a simple model, we show that these two scales do
not require the existence of two gaps. Rather, a single d-wave superconducting
gap with a loss of Bogoliubov quasiparticle spectral weight in the antinodal
region is shown to reconcile spectroscopic and transport measurements.Comment: 3 figure
Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering
We explored by electronic Raman scattering the superconducting state of
Bi-2212 single crystal by performing a fine tuned doping study. We found three
distinct energy scales in A1g, B1g and B2g symmetries which show three distinct
doping dependencies. Above p=0.22 the three energies merge, below p=0.12, the
A1g scale is no more detectable while the B1g and B2g scales become constant in
energy. In between, the A1g and B1g scales increase monotonically with
under-doping while the B2g one exhibits a maximum at p=0.16. The three
superconducting energy scales appear to be an universal feature of hole-doped
cuprates. We propose that the non trivial doping dependence of the three scales
originates from Fermi surface topology changes and reveals competing orders
inside the superconducting dome.Comment: 6 pages, 5 figure
Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBaCaCuO
We study the temperature-dependent electronic B1g Raman response of a
slightly under-doped single crystal HgBaCaCuO with a
superconducting critical temperature Tc=122 K. Our main finding is that the
superconducting pair-breaking peak is associated with a dip on its
higher-energy side, disappearing together at Tc. This result hints at an
unconventional pairing mechanism, whereas spectral weight lost in the dip is
transferred to the pair-breaking peak at lower energies. This conclusion is
supported by cellular dynamical mean-field theory on the Hubbard model, which
is able to reproduce all the main features of the B1g Raman response and
explain the peak-dip behavior in terms of a nontrivial relationship between the
superconducting and the pseudo gaps.Comment: 7 pages 4 figure
Infrared phonon dynamics of multiferroic BiFeO3 single crystal
We discuss the first infrared reflectivity measurement on a BiFeO3 single
crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon
modes are fully and unambiguously determined. The frequencies of the 4 A1
c-axis phonons are found. These results settle issues between theory and data
on ceramics. Our findings show that the softening of the lowest frequency E
mode is responsible for the temperature dependence of the dielectric constant,
indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.Comment: 5 pages (figures included
Spin Dynamics in Cuprates: Optical Conductivity of HgBa2CuO4
The electron-boson spectral density function I^2ChiOmega responsible for
carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K)
is calculated from new data on the optical scattering rate. A maximum entropy
technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also
inverted and these new results are put in the context of other known cases. All
spectra (with two notable exceptions) show a peak at an energy (Omega_r)
proportional to the superconducting transition temperature Omega_r ~= 6.3
kB.Tc. This charge channel relationship follows closely the magnetic resonance
seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The
amplitudes of both peaks decrease strongly with increasing temperature. In some
cases, the peak at Omega_r is weak and the spectrum can have additional maxima
and a background extending up to several hundred meV
Recommended from our members
Annual Report 1998: Chemical Structure and Dynamics
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE)
- …