The electron-boson spectral density function I^2ChiOmega responsible for
carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K)
is calculated from new data on the optical scattering rate. A maximum entropy
technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also
inverted and these new results are put in the context of other known cases. All
spectra (with two notable exceptions) show a peak at an energy (Omega_r)
proportional to the superconducting transition temperature Omega_r ~= 6.3
kB.Tc. This charge channel relationship follows closely the magnetic resonance
seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The
amplitudes of both peaks decrease strongly with increasing temperature. In some
cases, the peak at Omega_r is weak and the spectrum can have additional maxima
and a background extending up to several hundred meV