2,183 research outputs found

    Resource availability at Taurus-Littrow

    Get PDF
    Early lunar technologies will probably use a common lunar material as ore. They will be robust to minor fluctuations in feedstock composition and will not require appreciable feedstock beneficiation such as rock grinding or mineral concentration. Technologies using unprocessed soil and indifferent to its composition will have the advantage. Nevertheless, the size and grade of the ore body must be confirmed for even the most indiscriminate process. Simple uses such as heaping unprocessed lunar soil for thermal insulation or radiation shielding onto a habitat require that we know the depth of the regolith, the size distributions of its soils, the locations of large boulders, and the ease of excavation. Costs of detailed site surveys trade against restrictions on site selection and conservative engineering design to accommodate unknown conditions of a poorly explored site. Given the above considerations, we consider briefly some abundant lunar materials, their proposed uses, and technologies for their preparation, with particular attention to the Taurus-Littrow site

    Oxygen and iron production by electrolytic smelting of lunar soil

    Get PDF
    Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell

    Oxygen and iron production by electrolytic smelting of lunar soil

    Get PDF
    Work during the past year involved two aspects: (1) electrolysis experiments on a larger scale than done before, and (2) collaboration with Carbotek Inc. on design for a lunar magma electrolysis cell. It was demonstrated previously that oxygen can be produced by direct electrolysis of silicate melts. Previous experiments using 50-100 mg of melt have succeeded in measuring melt resistivities, oxygen production efficiencies, and have identified the character of metal products. A series of experiments using 1-8 grams of silicate melt, done in alumina and spinel containers sufficiently large that surface tension effects between the melt and the wall are expected to have minor effect on the behavior of the melt in the region of the electrodes were completed. The purpose of these experiments was to demonstrate the durability of the electrode and container materials, demonstrate the energy efficiency of the electrolysis process, further characterize the nature of the expected metal and spinel products, measure the efficiency of oxygen production and compare to that predicted on the basis of the smaller-scale experiments, and identify any unexpected benefits or problems of the process. Four experimental designs were employed. Detailed results of these experiments are given in the appendix ('Summary of scaling-up experiments'); a general report of the results is given in terms of implications of the experiments on container materials, cathode materials, anode materials, bubble formation and frothing of the melt, cell potential, anode-cathode distance, oxygen efficiency, and energy efficiency

    Cross validation for the classical model of structured expert judgment

    Get PDF
    We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance weighting and equal weighting is 0.001

    Cross validation for the classical model of structured expert judgment

    Get PDF
    We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance weighting and equal weighting is 0.001

    Life Study Ethics and Information Governance Framework

    Get PDF

    Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Get PDF
    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape

    Spin Dynamics in Cuprates: Optical Conductivity of HgBa2CuO4

    Full text link
    The electron-boson spectral density function I^2ChiOmega responsible for carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K) is calculated from new data on the optical scattering rate. A maximum entropy technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also inverted and these new results are put in the context of other known cases. All spectra (with two notable exceptions) show a peak at an energy (Omega_r) proportional to the superconducting transition temperature Omega_r ~= 6.3 kB.Tc. This charge channel relationship follows closely the magnetic resonance seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The amplitudes of both peaks decrease strongly with increasing temperature. In some cases, the peak at Omega_r is weak and the spectrum can have additional maxima and a background extending up to several hundred meV

    Quantifying uncertainty in intervention effectiveness with structured expert judgement : an application to obstetric fistula

    Get PDF
    To demonstrate a new application of structured expert judgement to assess the effectiveness of surgery to correct obstetric fistula in a low-income setting. Intervention effectiveness is a major input of evidence-informed priority setting in healthcare, but information on intervention effectiveness is generally lacking. This is particularly problematic in the context of poorly resourced healthcare settings where even efficacious interventions fail to translate into improvements in health. The few intervention effectiveness studies related to obstetric fistula treatment focus on the experience of single facilities and do not consider the impact of multiple factors that may affect health outcomes. We use the classical model of structured expert judgement, a method that has been used to quantify uncertainty in the areas of engineering and environmental risk assessment when data are unavailable. Under this method, experts quantify their uncertainty about rates of long-term disability in patients with fistula following treatment in different contexts, but the information content drawn from their responses is statistically conditioned on the accuracy and informativeness of their responses to a set of calibration questions. Through this method, we develop best estimates and uncertainty bounds for the rate of disability associated with each treatment scenario and setting. Eight experts in obstetric fistula repair in low and middle income countries. Estimates developed using performance weights were statistically superior to those involving a simple averaging of expert responses. The performance-weight decision maker's assessments are narrower for 9 of the 10 calibration questions and 21 of 23 variables of interest. We find that structured expert judgement is a viable approach to investigating the effectiveness of medical interventions where randomised controlled trials are not possible. Understanding the effectiveness of surgery performed at different types of facilities can guide programme planning to increase access to fistula treatment

    Nernst effect and disorder in the normal state of high-T_{c} cuprates

    Full text link
    We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c} decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of "intrinsic" disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.Comment: revised version. to be published in Physical Review Letter
    corecore