41 research outputs found

    Design and optimization of a self-deploying single axis tracking PV array

    Get PDF
    This study was performed in order to design a tracking photovoltaic (PV) array and optimize the design for maximum specific power. The design considerations were minimal deployment time, high reliability, and small stowage volume. The array design was self-deployable, from a compact stowage configuration, using a passive pressurized gas deployment mechanism. The array structural components consist of a combination of beams, columns, and cables used to deploy and orient a flexible PV blanket. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power. The optimization was performed for both lunar and Martian environments with 4 types of PV blankets (silicon, GaAs/Ge, GaAs CLEFT, and amorphous silicon). For the lunar environment, the amorphous silicon array produced the highest specific power, whereas, for Mars the GaAs CLEFT array produced the highest specific power. A comparison was made to a fixed PV tent array of similar design. The tracking array produced a higher specific power with all types of the PV blankets examined except amorphous silicon at both locations

    Analysis of lunar regolith thermal energy storage

    Get PDF
    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period

    Self-deploying photovoltaic power system

    Get PDF
    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration

    Fuel Cell Thermal Management Through Conductive Cooling Plates

    Get PDF
    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system

    Evaluation of Long Duration Flight on Venus

    Get PDF
    An analysis was performed to evaluate the potential of utilizing either an airship or aircraft as a flight platform for long duration flight within the atmosphere of Venus. In order to achieve long-duration flight, the power system for the vehicle had to be capable of operating for extended periods of time. To accomplish these, two types of power systems were considered, a solar energy-based power system utilizing a photovoltaic array as the main power source and a radioisotope heat source power system utilizing a Stirling engine as the heat conversion device. Both types of vehicles and power systems were analyzed to determine their flight altitude range. This analysis was performed for a station-keeping mission where the vehicle had to maintain a flight over a location on the ground. This requires the vehicle to be capable of flying faster than the wind speed at a particular altitude. An analysis was also performed to evaluate the altitude range and maximum duration for a vehicle that was not required to maintain station over a specified location. The results of the analysis show that each type of flight vehicle and power system was capable of flight within certain portions of Venus s atmosphere. The aircraft, both solar and radioisotope power proved to be the most versatile and provided the greatest range of coverage both for station-keeping and non-station-keeping missions

    Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions

    Get PDF
    This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made

    Advanced Modular Power System Electronics Enclosure Thermal Testing

    Get PDF
    An analysis was set up to model the temperature of the advanced modular power system (AMPS) power distribution cards when installed within the electronics enclosure case. The analysis was used to determine the steady-state temperature distribution of the cards within the case. To verify the analysis, an experiment was set up and conducted to simulate the operation of the cards within the enclosure. Four tests were conducted. The tests varied the position of the cold plate and evaluated the use of a thermal compound to reduce the contact resistance between the joints within the thermal path between the cards and the cold plate. Three of the four cases examined showed very good agreement between the analysis and the experiment with a less than 1-percent variation in the predicated temperatures determined through the analysis and the experimentally derived temperatures. In the remaining case, the difference between the analysis and experiment was approximately 12 percent. Both the experiment and analysis showed that the modular power conditioning cards can be maintained within their desired maximum operating temperature range of 40 to 45 C through thermal conduction to a cold plate when operating with their estimated maximum heat output of 16 W per card
    corecore