55 research outputs found

    Preliminary design of a long-endurance Mars aircraft

    Get PDF
    The preliminary design requirements of a long endurance aircraft capable of flight within the Martian environment was determined. Both radioisotope/heat engine and PV solar array power production systems were considered. Various cases for each power system were analyzed in order to determine the necessary size, weight and power requirements of the aircraft. The analysis method used was an adaptation of the method developed by Youngblood and Talay of NASA-Langley used to design a high altitude earth based aircraft. The analysis is set up to design an aircraft which, for the given conditions, has a minimum wingspan and maximum endurance parameter. The results showed that, for a first approximation, a long endurance aircraft is feasible within the Martian environment. The size and weight of the most efficient solar aircraft were comparable to the radioisotope powered one

    Design and optimization of a self-deploying single axis tracking PV array

    Get PDF
    This study was performed in order to design a tracking photovoltaic (PV) array and optimize the design for maximum specific power. The design considerations were minimal deployment time, high reliability, and small stowage volume. The array design was self-deployable, from a compact stowage configuration, using a passive pressurized gas deployment mechanism. The array structural components consist of a combination of beams, columns, and cables used to deploy and orient a flexible PV blanket. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power. The optimization was performed for both lunar and Martian environments with 4 types of PV blankets (silicon, GaAs/Ge, GaAs CLEFT, and amorphous silicon). For the lunar environment, the amorphous silicon array produced the highest specific power, whereas, for Mars the GaAs CLEFT array produced the highest specific power. A comparison was made to a fixed PV tent array of similar design. The tracking array produced a higher specific power with all types of the PV blankets examined except amorphous silicon at both locations

    Analysis of lunar regolith thermal energy storage

    Get PDF
    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period

    Self-deploying photovoltaic power system

    Get PDF
    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration

    Effect of Date and Location on Maximum Achievable Altitude for a Solar Powered Aircraft

    Get PDF
    The maximum altitude attainable for a solar powered aircraft without any energy storage capability is examined. Mission profiles for a solar powered aircraft were generated over a range of latitudes and dates. These profiles were used to determine which latitude-date combinations produced the highest achieavable altitude. Based on the presented analysis the results have shown that for a given time of year lower latitudes produced higher maximum altitudes. For all the cases examined the time and date which produced the highest altitude was around March at the equator

    SEADYN Analysis of a Tow Line for a High Altitude Towed Glider

    Get PDF
    The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation

    Small Lunar Base Camp and in Situ Resource Utilization Oxygen Production Facility Power System Comparison

    Get PDF
    This report examines the power requirements for operating an in situ resource utilization (ISRU) oxygen production system on the lunar surface and a small six-person base camp. The baseline ISRU system produced 1.63 kg/h for a total day and night production rate of 1,154 kg. It was estimated that this plant would require 25.83 kW of power to operate. The base camp power includes auxiliary equipment as well as a communications system. The required power estimate for the base camp was 28.05 kW. This estimation was used to size a power system and determine its mass for meeting these requirements. Three types of power systems were considered: a solar photovoltaic (PV) array system using batteries for energy storage, a PV array system using a regenerative fuel cell (RFC) for energy storage, and a modular 10-kW electrical output power Kilopower reactor system. Three separate cases were examined: a stand-alone ISRU oxygen production system, a base camp, and a combined ISRU oxygen production system and base camp. For the PV array-based system, the RFC energy storage method had a mass advantage over a battery- based energy storage system. For higher power nighttime power operation for all three cases, the RFC systems specific energy was just over 830 Wh/kg. For the lower power nighttime keep-alive level used as part of the Case 1 analysis, the specific energy for the RFC was 456 Wh/kg. Both of these levels are significantly above the specific energy of 200 Wh/kg for the battery. Because of this higher specific energy, the RFC-based system provided significant mass advantages over the battery-based energy storage system. The baseline reactor system utilized shielding and separation distance to meet the desired maximum radiation dose level of 5 rem/yr for personnel operating within the vicinity of the power loads, base camp, and oxygen production facility. There are methods that could potentially be utilized to reduce the shielding requirements and separation distance. Implementing these would reduce the overall system mass for the reactor. Also, optimizing the reactor output to a specific mission would provide benefits in mass at the expense of modularity. The results of the power system comparison between a solar PV array-based system and a Kilopower reactor-based system has shown that for missions required to operate throughout the lunar night at power levels comparable to those used during the day, the reactor-based system provides a significant mass advantage. However, for applications that can meet their mission requirements while only having to operate during the daytime with minimal power required to survive the nighttime, the PV array-based system provides a mass advantage

    Thermal System Sizing Comparison of a PEM and Solid Oxide Fuel Cell Systems on Mars

    Get PDF
    Power production is a key aspect to any Mars mission. One method for providing power throughout the day/night cycle, or to satisfy short-duration high-output power needs, is to utilize a regenerative fuel cell system for providing energy storage and nighttime or supplemental power. This study compares the total system mass for two types of fuel cell systems, proton exchange membrane (PEM) and solid oxide (SO), sized to provide 10 kW of electrical output power in the Mars environment. Two operating locations were examined; one near the equator at 4 S latitude and one the higher northern latitude of 48N. The systems were sized to operate throughout the year at these locations, where the radiator was sized for the worst-case warm condition and the insulation was sized for the worst-case cold condition. Using the selected system parameters, the results for both latitudes showed that the lightest system was the SO fuel cell with a PEM electrolyzer. This was mainly due to the higher operational temperature of the SO system enabled a significantly smaller radiator mass compared to that of the PEM fuel cell system. However, there was a significant difference in mass for the PEM system when operated near the equator as compared to the higher northern latitude. For the 10-kW output system this difference in mass was just under 100 kg

    Fuel Cell Thermal Management Through Conductive Cooling Plates

    Get PDF
    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system

    Evaluation of Long Duration Flight on Venus

    Get PDF
    An analysis was performed to evaluate the potential of utilizing either an airship or aircraft as a flight platform for long duration flight within the atmosphere of Venus. In order to achieve long-duration flight, the power system for the vehicle had to be capable of operating for extended periods of time. To accomplish these, two types of power systems were considered, a solar energy-based power system utilizing a photovoltaic array as the main power source and a radioisotope heat source power system utilizing a Stirling engine as the heat conversion device. Both types of vehicles and power systems were analyzed to determine their flight altitude range. This analysis was performed for a station-keeping mission where the vehicle had to maintain a flight over a location on the ground. This requires the vehicle to be capable of flying faster than the wind speed at a particular altitude. An analysis was also performed to evaluate the altitude range and maximum duration for a vehicle that was not required to maintain station over a specified location. The results of the analysis show that each type of flight vehicle and power system was capable of flight within certain portions of Venus s atmosphere. The aircraft, both solar and radioisotope power proved to be the most versatile and provided the greatest range of coverage both for station-keeping and non-station-keeping missions
    corecore