553 research outputs found

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding

    Get PDF
    Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma. Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress. Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study

    Get PDF
    INTRODUCTION: A selective combination of C-reactive protein and albumin (termed the modified Glasgow Prognostic Score, mGPS) has been shown to have prognostic value, independent of tumour stage, in lung, gastrointestinal and renal cancers. It is also of interest that liver function tests such as bilirubin, alkaline phosphatase and gamma-glutamyl transferase, as well as serum calcium, have also been reported to predict cancer survival. The aim of the present study was to examine the relationship between an inflammation-based prognostic score (mGPS), biochemical parameters, tumour site and survival in a large cohort of patients with cancer. METHODS: Patients (n = 21 669) who had an incidental blood sample taken between 2000 and 2006 for C-reactive protein, albumin and calcium (and liver function tests where available) and a diagnosis of cancer were identified. Of this group 9608 patients who had an ongoing malignant process were studied (sampled within 2 years before diagnosis). Also a subgroup of 5397 sampled at the time of diagnosis (sampled within 2 months prior to diagnosis) were examined. Cancers were grouped by tumour site in accordance with International Classification of Diseases 10 (ICD 10). RESULTS: On follow up, there were 6005 (63%) deaths of which 5122 (53%) were cancer deaths. The median time from blood sampling to diagnosis was 1.4 months. Increasing age, male gender and increasing deprivation was associated with a reduced 5-year overall and cancer-specific survival (all P &lt; 0.001). An elevated mGPS, adjusted calcium, bilirubin, alkaline phosphatase, aspartate transaminase, alanine transaminase and gamma-glutamyl transferase were associated with a reduced 5-year overall and cancer-specific survival (independent of age, sex and deprivation in all patients sampled), as well as within the time of diagnosis subgroup (all P &lt; 0.001). An increasing mGPS was predictive of a reduced cancer-specific survival in all cancers (all P &lt; 0.001). CONCLUSION: The results of the present study indicate that the mGPS is a powerful prognostic factor when compared with other biochemical parameters and independent of tumour site in patients with cancer

    IL1B-CGTC haplotype is associated with colorectal cancer in admixed individuals with increased African ancestry

    Get PDF
    Single-nucleotide polymorphisms (SNPs) in cytokine genes can affect gene expression and thereby modulate inflammation and carcinogenesis. However, the data on the association between SNPs in the interleukin 1 beta gene (IL1B) and colorectal cancer (CRC) are conflicting. We found an association between a 4-SNP haplotype block of the IL1B (-3737C/-1464G/-511T/-31C) and CRC risk, and this association was exclusively observed in individuals with a higher proportion of African ancestry, such as individuals from the Coastal Colombian region (odds ratio, OR 2.06; 95% CI 1.31–3.25; p < 0.01). Moreover, a significant interaction between this CRC risk haplotype and local African ancestry dosage was identified in locus 2q14 (p = 0.03). We conclude that Colombian individuals with high African ancestry proportions at locus 2q14 harbour more IL1B-CGTC copies and are consequently at an increased risk of CRC. This haplotype has been previously found to increase the IL1B promoter activity and is the most frequent haplotype in African Americans. Despite of limitations in the number of samples and the lack of functional analysis to examine the effect of these haplotypes on CRC cell lines, our results suggest that inflammation and ethnicity play a major role in the modulation of CRC risk
    • …
    corecore