9 research outputs found

    Electrode pooling: boosting the yield of extracellular recordings with switchable silicon probes

    Get PDF
    State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a novel method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy

    Multi-day Neuron Tracking in High Density Electrophysiology Recordings using EMD

    Get PDF
    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, which a reused by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identify using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 84% average recovery rate

    An unbiased template of the Drosophila brain and ventral nerve cord.

    No full text
    The fruit fly Drosophila melanogaster is an important model organism for neuroscience with a wide array of genetic tools that enable the mapping of individual neurons and neural subtypes. Brain templates are essential for comparative biological studies because they enable analyzing many individuals in a common reference space. Several central brain templates exist for Drosophila, but every one is either biased, uses sub-optimal tissue preparation, is imaged at low resolution, or does not account for artifacts. No publicly available Drosophila ventral nerve cord template currently exists. In this work, we created high-resolution templates of the Drosophila brain and ventral nerve cord using the best-available technologies for imaging, artifact correction, stitching, and template construction using groupwise registration. We evaluated our central brain template against the four most competitive, publicly available brain templates and demonstrate that ours enables more accurate registration with fewer local deformations in shorter time

    TEM and array tomography images from Source data and images for "Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites" by Bloss, Cembrowski, Karsh, Colonell, Fetter, and Spruston (2018).

    No full text
    <div>These are the raw images from Bloss et al. (2018), titled "Single excitatory axons from clustered synapses onto CA1 pyramidal cell dendrites"<br></div><div><br></div>Files include TEM micrographs, stacks of TEM micrographs, projections from array tomography volumes, and confocal laser microscopy images

    Source data for "Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites" by Bloss, Cembrowski, Karsh, Colonell, Fetter, and Spruston (2018).

    No full text
    These are the raw data from Bloss et al. (2018) titled "Single excitatory axons from clustered synapses onto CA1 pyramidal cell dendrites." <div><br></div><div>For the raw data, each sheet within the Excel file corresponds to a Figure or Supplementary Figure.</div

    Comparative single-cell transcriptomics of complete insect nervous systems

    No full text
    International audienceMolecular profiles of neurons influence information processing, but bridging the gap between genes, circuits, and behavior has been very difficult. Furthermore, the behavioral state of an animal continuously changes across development and as a result of sensory experience. How behavioral state influences molecular cell state is poorly understood. Here we present a complete atlas of the Drosophila larval central nervous system composed of over 200,000 single cells across four developmental stages. We develop polyseq , a python package, to perform cell-type analyses. We use single-molecule RNA-FISH to validate our scRNAseq findings. To investigate how internal state affects cell state, we optogentically altered internal state with high-throughput behavior protocols designed to mimic wasp sting and over activation of the memory system. We found nervous system-wide and neuron-specific gene expression changes. This resource is valuable for developmental biology and neuroscience, and it advances our understanding of how genes, neurons, and circuits generate behavior

    Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy

    No full text
    Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.ISSN:2050-084

    Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings

    Full text link
    Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice
    corecore