2,230 research outputs found

    Peer coaching through mHealth targeting physical activity in people with Parkinson disease: feasibility study

    Get PDF
    BACKGROUND: Long-term engagement in exercise and physical activity mitigates the progression of disability and increases quality of life in people with Parkinson disease (PD). Despite this, the vast majority of individuals with PD are sedentary. There is a critical need for a feasible, safe, acceptable, and effective method to assist those with PD to engage in active lifestyles. Peer coaching through mobile health (mHealth) may be a viable approach. OBJECTIVE: The purpose of this study was to develop a PD-specific peer coach training program and a remote peer-mentored walking program using mHealth technology with the goal of increasing physical activity in persons with PD. We set out to examine the feasibility, safety, and acceptability of the programs along with preliminary evidence of individual-level changes in walking activity, self-efficacy, and disability in the peer mentees. METHODS: A peer coach training program and a remote peer-mentored walking program using mHealth was developed and tested in 10 individuals with PD. We matched physically active persons with PD (peer coaches) with sedentary persons with PD (peer mentees), resulting in 5 dyads. Using both Web-based and in-person delivery methods, we trained the peer coaches in basic knowledge of PD, exercise, active listening, and motivational interviewing. Peer coaches and mentees wore FitBit Zip activity trackers and participated in daily walking over 8 weeks. Peer dyads interacted daily via the FitBit friends mobile app and weekly via telephone calls. Feasibility was determined by examining recruitment, participation, and retention rates. Safety was assessed by monitoring adverse events during the study period. Acceptability was assessed via satisfaction surveys. Individual-level changes in physical activity were examined relative to clinically important differences. RESULTS: Four out of the 5 peer pairs used the FitBit activity tracker and friends function without difficulty. A total of 4 of the 5 pairs completed the 8 weekly phone conversations. There were no adverse events over the course of the study. All peer coaches were "satisfied" or "very satisfied" with the training program, and all participants were "satisfied" or "very satisfied" with the peer-mentored walking program. All participants would recommend this program to others with PD. Increases in average steps per day exceeding the clinically important difference occurred in 4 out of the 5 mentees. CONCLUSIONS: Remote peer coaching using mHealth is feasible, safe, and acceptable for persons with PD. Peer coaching using mHealth technology may be a viable method to increase physical activity in individuals with PD. Larger controlled trials are necessary to examine the effectiveness of this approach.This study is supported by Boston Roybal Center for Active Lifestyle Interventions (RALI Boston), Grant #P30 AG048785, and the American Parkinson Disease Association, Massachusetts chapter. The authors would like to thank Nicole Sullivan, SOT, for her assistance with data management and data collection and Nick Wendel, DPT, for his assistance with data collection. Additionally, the authors would like to thank the participants in this study for their time, effort, and insights. (P30 AG048785 - Boston Roybal Center for Active Lifestyle Interventions (RALI Boston); American Parkinson Disease Association, Massachusetts chapter)Accepted manuscrip

    Spitzer Phase Curves of KELT-1b and the Signatures of Nightside Clouds in Thermal Phase Observations

    Full text link
    We observed two full orbital phase curves of the transiting brown dwarf KELT-1b, at 3.6um and 4.5um, using the Spitzer Space Telescope. Combined with previous eclipse data from Beatty et al. (2014), we strongly detect KELT-1b's phase variation as a single sinusoid in both bands, with amplitudes of 964±36964\pm36 ppm at 3.6um and 979±54979\pm54 ppm at 4.5um, and confirm the secondary eclipse depths measured by Beatty et al. (2014). We also measure noticeable Eastward hotspot offsets of 28.4±3.528.4\pm3.5 degrees at 3.6um and 18.6±5.218.6\pm5.2 degrees at 4.5um. Both the day-night temperature contrasts and the hotspot offsets we measure are in line with the trends seen in hot Jupiters (e.g., Crossfield 2015), though we disagree with the recent suggestion of an offset trend by Zhang et al. (2018). Using an ensemble analysis of Spitzer phase curves, we argue that nightside clouds are playing a noticeable role in modulating the thermal emission from these objects, based on: 1) the lack of a clear trend in phase offsets with equilibrium temperature, 2) the sharp day-night transitions required to have non-negative intensity maps, which also resolves the inversion issues raised by Keating & Cowan (2017), 3) the fact that all the nightsides of these objects appear to be at roughly the same temperature of 1000K, while the dayside temperatures increase linearly with equilibrium temperature, and 4) the trajectories of these objects on a Spitzer color-magnitude diagram, which suggest colors only explainable via nightside clouds.Comment: AJ in press. Updated to reflect the accepted versio

    TARGETING THE ROLE OF SUBTILISIN-LIKE PROTEASE 2 FOR INHIBITION OF ERYTHROCYTE INVASION BY THE MALARIA PARASITE, PLASMODIUM

    Get PDF
    Malaria is a mosquito-harbored infectious disease causing approximately half a million deaths every year around the world. Out of the five Plasmodium species that infect humans, P. falciparum is the deadliest. Despite the relative success in decreasing malaria-related deaths through various efforts, emergence of parasite resistance against antimalarials remains a major challenge. This is mainly because the parasite develops resistance before new effective drugs can become available. In addition, there is no approved vaccine for malaria that will prevent the infection in most groups affected. The protection offered by the malaria vaccine candidate, RTS,S, currently on phase III clinical trials, is less than 40% in children when used along with bed nets and other malaria prevention recommendations. Additional vaccine candidates are needed to provide better protection against malaria. The characterization of molecular targets allows the development of inhibitors against the parasite via rational design, helping to advance the development of vaccine and treatment. Subtilisin-like protease 2 (SUB2) is the only Plasmodium subtilisin playing a direct role during invasion of the red blood cell (RBC), a critical step in malaria parasite development during the asexual, symptom-causing stages. SUB2 merozoite surface sheddase (MeSh) activity is essential for parasite survival and RBC invasion. A SUB2-specic inhibitor will lead to impairment of invasion. Additionally, SUB2 is secreted onto the surface of the parasite to access its substrates, staying exposed to the antibodies in the blood, making it a merozoite surface antigen itself and a candidate for antibody-mediated inhibition. This makes SUB2 both a potential drug target and a vaccine candidate. At the present, our understanding of SUB2 biochemistry and biophysical properties is limited and now studies have tested this subtilisin as a vaccine candidate. In this dissertation, we show that antibody-mediated inhibition results in decreased parasite infection in a proof-of-principle experiment with mice. We have also attempted to characterize the two SUB2 peptides utilized in immunization experiments by using a self-assembling protein nanoparticle on a different, but related, experiment using a mouse model of malaria. Finally, we develop an expression system for active SUB2 as well as a SUB2-specific protease assay with native SUB2 substrates

    Bridge to neuroscience workshop: An effective educational tool to introduce principles of neuroscience to Hispanics students

    Get PDF
    Neuroscience as a discipline is rarely covered in educational institutions in Puerto Rico. In an effort to overcome this deficit we developed the Bridge to Neuroscience Workshop (BNW), a full-day hands-on workshop in neuroscience education. BNW was conceived as an auxiliary component of a parent recruitment program called Bridge to the PhD in Neuroscience Program (BPNP). The objectives of BNW are to identify promising students for BPNP, and to increase awareness of neuroscience as a discipline and a career option. BNW introduces basic concepts in neuroscience using a variety of educational techniques, including mini-lectures, interactive discussions, case studies, experimentation, and a sheep brain dissection. Since its inception in 2011 BNW has undergone a series of transformations that continue to improve upon an already successful and influential educational program for underrepresented minorities. As of Fall 2018, we have presented 21 workshops, impacting 200 high school and 424 undergraduate students. BNW has been offered at University of Puerto Rico (UPR)-Arecibo, UPR-Cayey, UPR-Humacao, Pontificia Universidad Católica de Ponce, and Universidad Interamericana de Puerto Rico-Arecibo. A pre-and post evaluation was given to evaluate material comprehension and thus measure effectiveness of our one-day interactive workshop. Our results suggest that both high school and undergraduate students have little prior knowledge of neuroscience, and that participation in BNW improves not only understanding, but also enthusiasm for the discipline. Currently, our assessment has only been able to evaluate short-term effects (e.g. comprehension and learning). Therefore, our current focus is developing methods capable of determining how participation in BNW impacts future academic and career decisions
    • …
    corecore