2,496 research outputs found

    On the role of electron-nucleus contact and microwave saturation in Thermal Mixing DNP

    Full text link
    We have explored the manifold physical scenario emerging from a model of Dynamic Nuclear Polarization (DNP) via thermal mixing under the hypothesis of highly effective electron-electron interaction. When the electron and nuclear reservoirs are also assumed to be in strong thermal contact and the microwave irradiation saturates the target electron transition, the enhancement of the nuclear polarization is expected to be considerably high even if the irradiation frequency is set far away from the centre of the ESR line (as already observed by Borghini) and the typical polarization time is reduced on moving towards the boundaries of said line. More reasonable behaviours are obtained by reducing the level of microwave saturation or the contact between electrons and nuclei in presence of nuclear leakage. In both cases the function describing the dependency of the steady state nuclear polarization on the frequency of irradiation becomes sharper at the edges and the build up rate decreases on moving off-resonance. If qualitatively similar in terms of the effects produced on nuclear polarization, the degree of microwave saturation and of electron-nucleus contact has a totally different impact on electron polarization, which is of course strongly correlated to the effectiveness of saturation and almost insensitive, at the steady state, to the magnitude of the interactions between the two spin reservoirs. The likelihood of the different scenario is discussed in the light of the experimental data currently available in literature, to point out which aspects are suitably accounted and which are not by the declinations of thermal mixing DNP considered here.Comment: 15 pages, 7 figure

    Discontinuity induced bifurcations of non-hyperbolic cycles in nonsmooth systems

    Full text link
    We analyse three codimension-two bifurcations occurring in nonsmooth systems, when a non-hyperbolic cycle (fold, flip, and Neimark-Sacker cases, both in continuous- and discrete-time) interacts with one of the discontinuity boundaries characterising the system's dynamics. Rather than aiming at a complete unfolding of the three cases, which would require specific assumptions on both the class of nonsmooth system and the geometry of the involved boundary, we concentrate on the geometric features that are common to all scenarios. We show that, at a generic intersection between the smooth and discontinuity induced bifurcation curves, a third curve generically emanates tangentially to the former. This is the discontinuity induced bifurcation curve of the secondary invariant set (the other cycle, the double-period cycle, or the torus, respectively) involved in the smooth bifurcation. The result can be explained intuitively, but its validity is proven here rigorously under very general conditions. Three examples from different fields of science and engineering are also reported

    Kyoto Seminar & Tokyo Seminar: Japanese Law in the Global Era. Impressions of an Italian Researcher in Kyoto

    Get PDF
    This is a short review of the Kyoto Seminar and Tokyo Seminar, two intensive courses on Japanese law (and the economy) organized by Ritsumeikan University in cooperation with the Australian Network for Japanese Law (ANJeL)

    Japan as a Victim of Comparative Law

    Get PDF
    Article published in the Michigan State International Law Review

    What We Talk About when We Talk About Consumer ODR. The EU ODR Regulation – and Its Preliminary Lessons

    Get PDF
    After providing a short theoretical framework about the definition and the boundaries of the notion of “Online Dispute Resolution” (ODR), this article carries out a preliminary analysis of the impact of EU Regulation No 524/2013 on online dispute resolution for consumer disputes. This critical assessment is also used as a basis for a broader reflection on the still-unexpressed potential of ODR. From this perspective, the article offers some suggestions on how to effectively implement successful ODR legislation based on the successes and pitfalls of several EU countries’ experiences. In particular, the article argues that a tool primarily conceived for solving cross-border consumer disputes may indeed also be used for domestic disputes, as well as for B2B differences

    Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins

    Get PDF
    In this work we propose an Uncertainty Quantification methodology for sedimentary basins evolution under mechanical and geochemical compaction processes, which we model as a coupled, time-dependent, non-linear, monodimensional (depth-only) system of PDEs with uncertain parameters. While in previous works (Formaggia et al. 2013, Porta et al., 2014) we assumed a simplified depositional history with only one material, in this work we consider multi-layered basins, in which each layer is characterized by a different material, and hence by different properties. This setting requires several improvements with respect to our earlier works, both concerning the deterministic solver and the stochastic discretization. On the deterministic side, we replace the previous fixed-point iterative solver with a more efficient Newton solver at each step of the time-discretization. On the stochastic side, the multi-layered structure gives rise to discontinuities in the dependence of the state variables on the uncertain parameters, that need an appropriate treatment for surrogate modeling techniques, such as sparse grids, to be effective. We propose an innovative methodology to this end which relies on a change of coordinate system to align the discontinuities of the target function within the random parameter space. The reference coordinate system is built upon exploiting physical features of the problem at hand. We employ the locations of material interfaces, which display a smooth dependence on the random parameters and are therefore amenable to sparse grid polynomial approximations. We showcase the capabilities of our numerical methodologies through two synthetic test cases. In particular, we show that our methodology reproduces with high accuracy multi-modal probability density functions displayed by target state variables (e.g., porosity).Comment: 25 pages, 30 figure

    Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Get PDF
    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\AA}) and OVIII (18.97 {\AA}) line profiles. Results. The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed \approx 50 km s1^{-1} and the other broader and consisting of subcomponents with redshift to speed in the range 200 \approx 400 km s1^{-1}. The profiles of OVIII lines appear more symmetric than C IV and are redshifted to speed \approx 150 km s1^{-1}. Conclusions. Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation.Comment: 11 pages, 10 figure

    Rethinking the sGLOH Descriptor

    Get PDF

    Dissecting and Reassembling Color Correction Algorithms for Image Stitching

    Get PDF
    corecore