69 research outputs found

    Microwave-Assisted Preparation of High Entropy Alloys

    Get PDF
    Microwaves at the ISM (Industrial, Scientific and Medical, reserved internationally) frequency of 2450 or 5800 MHz have been used to prepare FeCoNiCuAl, FeCrNiTiAl and FeCoCrNiAl2.5 high entropy alloys by direct heating of pressed mixtures of metal powders. The aim of this work is to explore a new microwave-assisted near-net-shape technology, using a powder metallurgy approach for the preparation of high entropy alloys, able to overcome the limits of current melting technologies (defects formation) or solid state ones (time demanding). High entropy alloy compositions have been selected so as to comprise at least one ferromagnetic element and one highly reactive couple, like Ni-Al, Ti-Al, Co-Al or Fe-Al. Results show that direct microwave heating of the powder precursors occurs, and further heating generation is favored by the ignition of exothermal reactions in the load. Microwaves have been applied both for the ignition and sustaining of such reactions, showing that by the proposed technique, it is possible to control the cooling rate of the newly-synthesized high entropy alloys. Results showed also that microwave heating in predominant magnetic field regions of the microwave applicator is more effective at controlling the cooling rate. The herein proposed microwave-assisted powder metallurgy approach is suitable to retain the shape of the load imparted during forming by uniaxial pressing. The homogeneity of the prepared high entropy alloys in all cases was good, without the dendritic segregation typical of arc melting, even if some partially-unreacted powders were detected in the samples

    Microwave processing of high entropy alloys: A powder metallurgy approach

    Get PDF
    Microwaves at the ISM frequency of 2450 and 5800 MHz have been exploited to prepare FeCoNiCrAl-family high entropy alloys by direct heating of pressed mixtures of metal powders. The aim of this work is to explore a new microwave assisted near-net-shape technology, using powder metallurgy approach for the preparation of high entropy alloys, able to overcome the limits of current melting technologies (defects formation) or solid state ones (time demanding). Results show that direct microwave heating of the powder precursors occurs, and further heating generation is favored by the ignition of exothermal reactions in the compound. Microwave processing, exploited both for the ignition and sustaining of such reactions, has been compared to reactive sintering in laboratory furnace and mechanical alloying in a planetary ball milling. Results demonstrate that microwave required the shortest time and lowest energy consumption, thus it is promising time- and cost-saving synthetic route

    Al, cu and zr addition to high entropy alloys: The effect on recrystallization temperature

    Get PDF
    The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization

    Influence of process parameters and alloying type on properties of laser quenched PM-steels

    Get PDF
    Different alloyed PM steels have been laser quenched in industrial equipment laser diodes (4 kW, controlled by material surface temperature). The aim of this work is to investigate their responses to different process condition and different alloying metals, i.e. Cu, Ni, Mo, Cr and C. Furthermore the microstructure of hardened layer, heat affected zone (HAZ) and bulk zone Pre-alloyed, diffusion bonded and hybrid raw materials have been used. Design of Experiments has been the approach for evaluating the effect of treatment parameters (i.e temperature, spot size and speed) and to develop predictive models, correlating such parameters to hardening depth and scratch hardness number. Results demonstrated which valuable properties could be achieved, even through relatively low alloying. The promising results are encouraging since they allow to forecast a possible positive combination of high local hardness and wear resistance of high precision PM part

    Coating of Titanium Substrates with ZrO2 and ZrO2-SiO2 Composites by Sol-Gel Synthesis for Biomedical Applications: Structural Characterization, Mechanical and Corrosive Behavior

    Get PDF
    The use of metallic materials as implants presents some major drawbacks, such as their harmful effects on the living organism, especially those induced by corrosion. To overcome this problem, the implant surface of titanium implants can be improved using a coating of bioactive and biocompatible materials. The aim of this work is the synthesis of SiO2/ZrO2 composites with different percentages of zirconia matrix (20, 33 and 50 wt.%), by the sol-gel method to coat commercial Grade 4 titanium disks using a dip coater. Attenuated total reflectance Fourier transform infrared (ATR/FTIR) spectroscopy was used to evaluate the interactions between the inorganic matrices. Furthermore, the mechanical properties and corrosive behavior of the SiO2/ZrO2 coatings were evaluated as a function of the ZrO2 content. The bioactive properties of the substrate coated with different composites were evaluated using simulated body fluid (SBF). The antibacterial activity was tested against gram-negative and gram-positive Escherichia coli and Enterococcus faecalis, respectively, to assess the release of toxic products from the different composites and to evaluate the possibility of using them in the biomedical field
    corecore