1,368 research outputs found

    VDAC, The early days

    Get PDF
    AbstractVDAC is now universally accepted as the channel in the mitochondrial outer membrane responsible for metabolite flux in and out of mitochondria. Its discovery occurred over two independent lines of investigation in the 1970s and 80s. This retrospective article describes the history of VDAC's discovery and how these lines merged in a collaboration by the authors. The article was written to give the reader a sense of the role played by laboratory environment, personalities, and serendipity in the discovery of the molecular basis for the unusual permeability properties of the mitochondrial outer membrane. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism

    Deamidation at Asparagine and Glutamine As a Major Modification upon Deterioration/Aging of Proteinaceous Binders in MuralPaintings

    Get PDF
    Proteomic strategies are herein proved to be a complementary approach to the well established amino acid composition analysis for the characterization of the aging and deterioration phenomena occurring to proteinaceous materials in works-of-art. Amino acid analyses on several samples demonstrated that proteins in the frescoes from the Camposanto Monumentale in Pisa are deteriorated as revealed by the decrease in Met, Lys, and Tyr content and by the presence in all the samples of amino malonic acid as a result of Ser, Phe, and Cys oxidation. Proteomic analysis identified deamidation at Asn and Gln as a further major event occurred. This work paves the way to the exploitation of proteomic strategies for the investigation of the molecular effects of aging and deterioration in historical objects. Results show that proteomic searches for deamidation by liquid chromatography-tandem mass spectrometry (LC-MS/MS) could constitute a routine analysis for paintings or any artistic and historic objects where proteins are present. Peptides that can be used as molecular markers when casein is present were identified

    Improvement in Wear Resistance of Grade 37 Titanium by Microwave Plasma Oxy-Carburizing

    Get PDF
    Grade 37 titanium is widely used in racing applications thanks to its oxidation resistance up to 650 °C, but it suffers from poor wear and fretting resistance, especially at high temperature. In this paper, different surface modification techniques, namely, carburizing, coating by PVD-ZrO2 and a novel microwave plasma oxy-carburizing treatment, are investigated in terms of hardness, wear resistance and scratch hardness, compared to the untreated substrate. Numerical simulation allowed optimization of the design of the microwave plasma source, which operated at 2.45 GHz at atmospheric pressure. The proposed microwave plasma oxy-carburizing treatment is localized and can serve to improve the tribological properties of selected regions of the sample; compared to untreated Grade 37 titanium, the oxy-carburized layer presents a decrease in the wear rate at 450 °C against alumina of 54% and an increase in scratch hardness of more than three times

    Development and Optimisation of an HPLC-DAD-ESI-QToF Method for the Determination of Phenolic Acids and Derivatives

    Get PDF
    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects

    The analysis of the Saltzman Collection of Peruvian dyes by high performance liquid chromatography and ambient ionisation mass spectrometry

    Get PDF
    Yarn samples from the Saltzman Collection of Peruvian dyes were characterized by several different analytical techniques: high performance liquid chromatography with both diode array detection (HPLC-DAD) and electrospray ionisation with tandem mass spectrometry (HPLC-ESI-Q-ToF), direct analysis in real time (DART) mass spectrometry and paper spray mass spectrometry. This report serves primarily as a database of chemical information about the colorants in these dye materials for those studying ancient South American textiles and their colorants. We also provide a comparison of the results obtained by currently widespread HPLC techniques with those of two different ambient ionisation direct mass spectrometry methods to highlight the advantages and disadvantages of these approaches

    Microwave-assisted preparation of multi principal element alloys by powder metallurgy approach

    Get PDF
    According to literature, the synthetic route to produce High entropy alloys (HEAs) should guarantee short alloying time, efficient cooling and capability to operate in controlled atmosphere. Such conditions can be achieved using high frequency electromagnetic fields, like microwave heating. In this work FeCoNiCrAl and FeCoNiCuAl, both equiatomic and reinforced by the 10% wt. of SiC were prepared by microwave assisted techniques. Results show that direct microwave heating of the powder precursors occurs, until the ignition conditions are reached. The temperature and duration of the microwave-assisted process result much lower than other conventional powder metallurgy routes, but at the cost of a higher residual porosity. Sample characterization confirmed that the powder metallurgy approach is suitable to retain the shape of the load imparted during forming by uniaxial pressing. The homogeneity of the samples resulted in being good in all cases, without the dendritic segregation typically occurring by liquid phase processing. © 2017 European Powder Metallurgy Association (EPMA

    High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating

    Get PDF
    The aim of this work was to investigate the field assisted powder metallurgy route for producing HEAs at equimolar composition, i.e. FeCoNiCrAl, starting from metal powders. Both mixed, mechanically activated and mechanically alloyed powders have been used. The powders obtained by mechanical alloying were synthesized only by SPS, whereas the remaining ones were sintered by SPS or microwave heating. The investigated field assisted sintering techniques allowed an extremely short alloying time, high energy density on the load and negligible contamination by the surrounding environment. Both the conducted sintering-synthesis technology resulted not definitive to produce chemical homogeneity and to obtain a single stable structure. Thus a subsequently heat treatment was required. The post heat treatment, indeed, led to a single crystalline structure (FCC) and the material was fully recrystallized. After heat treatment samples are isomorphic: they exhibit two different phases with the same FCC cell, but different chemical composition, in detail Fe-Cr richer and Al-Ni richer. SPS-ed samples present a reduced porosity, while microwave processed ones are much more porous and this is reflected in the mechanical properties
    • …
    corecore