1,358 research outputs found

    Observational Constraints on Higher Order Clustering up to $z\simeq 1

    Get PDF
    Constraints on the validity of the hierarchical gravitational instability theory and the evolution of biasing are presented based upon measurements of higher order clustering statistics in the Deeprange Survey, a catalog of 710,000\sim710,000 galaxies with IAB24I_{AB} \le 24 derived from a KPNO 4m CCD imaging survey of a contiguous 4×44^{\circ} \times 4^{\circ} region. We compute the 3-point and 4-point angular correlation functions using a direct estimation for the former and the counts-in-cells technique for both. The skewness s3s_3 decreases by a factor of 34\simeq 3-4 as galaxy magnitude increases over the range 17I22.517 \le I \le 22.5 (0.1z0.80.1 \lesssim z \lesssim 0.8). This decrease is consistent with a small {\it increase} of the bias with increasing redshift, but not by more than a factor of 2 for the highest redshifts probed. Our results are strongly inconsistent, at about the 3.54σ3.5-4 \sigma level, with typical cosmic string models in which the initial perturbations follow a non-Gaussian distribution - such models generally predict an opposite trend in the degree of bias as a function of redshift. We also find that the scaling relation between the 3-point and 4-point correlation functions remains approximately invariant over the above magnitude range. The simplest model that is consistent with these constraints is a universe in which an initially Gaussian perturbation spectrum evolves under the influence of gravity combined with a low level of bias between the matter and the galaxies that decreases slightly from z0.8z \sim 0.8 to the current epoch.Comment: 28 pages, 4 figures included, ApJ, accepted, minor change

    Extended Perturbation Theory for the Local Density Distribution Function

    Full text link
    Perturbation theory makes it possible to calculate the probability distribution function (PDF) of the large scale density field in the small variance limit. For top hat smoothing and scale-free Gaussian initial fluctuations, the result depends only on the linear variance, sigma_linear, and its logarithmic derivative with respect to the filtering scale -(n_linear+3)=dlog sigma_linear^2/dlog L (Bernardeau 1994). In this paper, we measure the PDF and its low-order moments in scale-free simulations evolved well into the nonlinear regime and compare the results with the above predictions, assuming that the spectral index and the variance are adjustable parameters, n_eff and sigma_eff=sigma, where sigma is the true, nonlinear variance. With these additional degrees of freedom, results from perturbation theory provide a good fit of the PDFs, even in the highly nonlinear regime. The value of n_eff is of course equal to n_linear when sigma << 1, and it decreases with increasing sigma. A nearly flat plateau is reached when sigma >> 1. In this regime, the difference between n_eff and n_linear increases when n_linear decreases. For initial power-spectra with n_linear=-2,-1,0,+1, we find n_eff ~ -9,-3,-1,-0.5 when sigma^2 ~ 100.Comment: 13 pages, 6 figures, Latex (MN format), submitted to MNRA

    Self-similarity and scaling behavior of scale-free gravitational clustering

    Full text link
    We measure the scaling properties of the probability distribution of the smoothed density field in NN-body simulations of expanding universes with scale-free initial power-spectra, with particular attention to the predictions of the stable clustering hypothesis. We concentrate our analysis on the ratios SQ()ξˉQ/ξˉ2Q1S_Q(\ell)\equiv {\bar \xi}_Q/{\bar \xi}_2^{Q-1}, Q5Q \leq 5, where ξˉQ{\bar \xi}_Q is the averaged QQ-body correlation function over a cell of radius \ell. The behavior of the higher order correlations is studied through that of the void probability distribution function. As functions of ξˉ2{\bar \xi}_2, the quantities SQS_Q, 3Q53 \leq Q \leq 5, exhibit two plateaus separated by a smooth transition around ξˉ21{\bar \xi}_2 \sim 1. In the weakly nonlinear regime, {\bar \xi}_2 \la 1, the results are in reasonable agreement with the predictions of perturbation theory. In the nonlinear regime, ξˉ2>1{\bar \xi}_2 > 1, the function SQ(ξˉ2)S_Q({\bar \xi}_2) is larger than in the weakly nonlinear regime, and increasingly so with n-n. It is well-fitted by the expression $S_Q= ({\bar \xi}_2/100)^{0.045(Q-2)}\ {\widetilde S}_Qforall for all n. This weak dependence on scale proves {\em a small, but significant departure from the stable clustering predictions} at least for n=0and and n=+1.Theanalysisof. The analysis of P_0confirmsthattheexpectedscaleinvarianceofthefunctions confirms that the expected scale-invariance of the functions S_Qisnotexactlyattainedinthepartofthenonlinearregimeweprobe,exceptpossiblyfor is not exactly attained in the part of the nonlinear regime we probe, except possibly for n=-2andmarginallyfor and marginally for n=-1$. In these two cases, our measurements are not accurate enough to be discriminant.Comment: 31 pages, postscript file, figure 1 missing. Postscript file including figure 1 available at ftp://ftp-astro-theory.fnal.gov:/pub/Publications/Pub-95-256-

    A Count Probability Cookbook: Spurious Effects and the Scaling Model

    Get PDF
    We study the errors brought by finite volume effects and dilution effects on the practical determination of the count probability distribution function P_N(n,L), which is the probability of having N objects in a cell of volume L^3 for a set of average number density n. Dilution effects are particularly relevant to the so-called sparse sampling strategy. This work is mainly done in the framework of the scaling model (Balian \& Schaeffer 1989), which assumes that the Q-body correlation functions obey the scaling relation xi_Q(K r_1,..., K r_Q) = K^{-(Q-1) gamma} xi_N(r_1,..., r_Q). We use three synthetic samples as references to perform our analysis: a fractal generated by a Rayleigh-L\'evy random walk with 3.10^4 objects, a sample dominated by a spherical power-law cluster with 3.10^4 objects and a cold dark matter (CDM) universe involving 3.10^5 matter particles.Comment: 44 pages, uuencoded compressed postcript file, FERMILAB-Pub-94/229-A, accepted in ApJ

    Adaptive Gravitational Force Representation for Fast Trajectory Propagation Near Small Bodies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76253/1/AIAA-32559-372.pd

    Large-Scale Structure of the Universe and Cosmological Perturbation Theory

    Get PDF
    We review the formalism and applications of non-linear perturbation theory (PT) to understanding the large-scale structure of the Universe. We first discuss the dynamics of gravitational instability, from the linear to the non-linear regime. This includes Eulerian and Lagrangian PT, non-linear approximations, and a brief description of numerical simulation techniques. We then cover the basic statistical tools used in cosmology to describe cosmic fields, such as correlations functions in real and Fourier space, probability distribution functions, cumulants and generating functions. In subsequent sections we review the use of PT to make quantitative predictions about these statistics according to initial conditions, including effects of possible non Gaussianity of the primordial fields. Results are illustrated by detailed comparisons of PT predictions with numerical simulations. The last sections deal with applications to observations. First we review in detail practical estimators of statistics in galaxy catalogs and related errors, including traditional approaches and more recent developments. Then, we consider the effects of the bias between the galaxy distribution and the matter distribution, the treatment of redshift distortions in three-dimensional surveys and of projection effects in angular catalogs, and some applications to weak gravitational lensing. We finally review the current observational situation regarding statistics in galaxy catalogs and what the future generation of galaxy surveys promises to deliver

    Hyperextended Cosmological Perturbation Theory: Predicting Non-linear Clustering Amplitudes

    Get PDF
    We consider the long-standing problem of predicting the hierarchical clustering amplitudes SpS_p in the strongly non-linear regime of gravitational evolution. N-body results for the non-linear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated ansatz that yields the strongly non-linear behavior of the skewness, S3S_3, starting from leading-order perturbation theory. When generalized to higher-order (p>3p>3) polyspectra or correlation functions, this ansatz leads to a good description of non-linear amplitudes in the strongly non-linear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the non-linear evolution of the bispectrum that interpolates between the weakly and strongly non-linear regimes, analogous to previous expressions for the power spectrum.Comment: 20 pages, 6 figures. Final version accepted by ApJ. Includes new paragraphs on factorizable hierarchical models and agreement of HEPT with the excursion set model for white-noise Gaussian fluctuation

    Biased-estimations of the Variance and Skewness

    Full text link
    Nonlinear combinations of direct observables are often used to estimate quantities of theoretical interest. Without sufficient caution, this could lead to biased estimations. An example of great interest is the skewness S3S_3 of the galaxy distribution, defined as the ratio of the third moment \xibar_3 and the variance squared \xibar_2^2. Suppose one is given unbiased estimators for \xibar_3 and \xibar_2^2 respectively, taking a ratio of the two does not necessarily result in an unbiased estimator of S3S_3. Exactly such an estimation-bias affects most existing measurements of S3S_3. Furthermore, common estimators for \xibar_3 and \xibar_2 suffer also from this kind of estimation-bias themselves: for \xibar_2, it is equivalent to what is commonly known as the integral constraint. We present a unifying treatment allowing all these estimation-biases to be calculated analytically. They are in general negative, and decrease in significance as the survey volume increases, for a given smoothing scale. We present a re-analysis of some existing measurements of the variance and skewness and show that most of the well-known systematic discrepancies between surveys with similar selection criteria, but different sizes, can be attributed to the volume-dependent estimation-biases. This affects the inference of the galaxy-bias(es) from these surveys. Our methodology can be adapted to measurements of analogous quantities in quasar spectra and weak-lensing maps. We suggest methods to reduce the above estimation-biases, and point out other examples in LSS studies which might suffer from the same type of a nonlinear-estimation-bias.Comment: 28 pages of text, 9 ps figures, submitted to Ap

    Cosmological Perturbation Theory Using the Schr\"odinger Equation

    Get PDF
    We introduce the theory of non-linear cosmological perturbations using the correspondence limit of the Schr\"odinger equation. The resulting formalism is equivalent to using the collisionless Boltzman (or Vlasov) equations which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation theory explicitly break down at shell crossing, e.g. Eulerean perturbation theory, which describes gravitational collapse in the fluid limit. This paper lays the groundwork by introducing the new formalism, calculating the perturbation theory kernels which form the basis of all subsequent calculations. We also establish the connection with conventional perturbation theories, by showing that third order tree level results, such as bispectrum, skewness, cumulant correlators, three-point function are exactly reproduced in the appropriate expansion of our results. We explicitly show that cumulants up to N=5 predicted by Eulerian perturbation theory for the dark matter field δ\delta are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises in the Schr\"odinger context, which means that tree level perturbation theory translates into (possibly incomplete) loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance is σ2=σL2+(1.14+n)σL4\sigma^2 = \sigma_L^2+ (-1.14+n)\sigma_L^4 for a field with spectral index nn. This yields 1.86 and 0.86 for n=3,2n=-3,-2 respectively, and to be compared with the exact loop order corrections 1.82, and 0.88. Thus our tree-level theory recovers the dominant part of first order loop corrections of the conventional theory, while including (partial) loop corrections to infinite order in terms of δ\delta.Comment: 5 pages, submitted to ApJ Letter
    corecore