33 research outputs found

    Diffraction of a Bose-Einstein Condensate in the Time Domain

    Full text link
    We have observed the diffraction of a Bose-Einstein condensate of rubidium atoms on a vibrating mirror potential. The matter wave packet bounces back at normal incidence on a blue-detuned evanescent light field after a 3.6 mm free fall. The mirror vibrates at a frequency of 500 kHz with an amplitude of 3.0 nm. The atomic carrier and sidebands are directly imaged during their ballistic expansion. The locations and the relative weights of the diffracted atomic wave packets are in very good agreement with the theoretical prediction of Carsten Henkel et al. [1].Comment: submitted to Phys. Rev.

    A Bose-Einstein condensate bouncing off a rough mirror

    Full text link
    We present experimental results and theoretical analysis of the diffuse reflection of a Bose-Einstein condensate from a rough mirror. The mirror is produced by a blue-detuned evanescent wave supported by a dielectric substrate. The results are carefully analysed via a comparison with a numerical simulation. The scattering is clearly anisotropic, more pronounced in the direction of the evanescent wave surface propagation, as predicted theoretically

    Schemes for loading a Bose-Einstein condensate into a two-dimensional dipole trap

    Full text link
    We propose two loading mechanisms of a degenerate Bose gas into a surface trap. This trap relies on the dipole potential produced by two evanescent optical waves far detuned from the atomic resonance, yielding a strongly anisotropic trap with typical frequencies 40 Hz x 65 Hz x 30 kHz. We present numerical simulations based on the time-dependent Gross-Pitaevskii equation of the transfer process from a conventional magnetic trap into the surface trap. We show that, despite a large discrepancy between the oscillation frequencies along one direction in the initial and final traps, a loading time of a few tens of milliseconds would lead to an adiabatic transfer. Preliminary experimental results are presented

    Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip

    Full text link
    An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this strong coupling regime of cavity quantum electrodynamics (cQED) has been the subject of spectacular experimental advances, and great efforts have been made to control the coupling rate by trapping and cooling the atom towards the motional ground state, which has been achieved in one dimension so far. For N atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs), but although first experiments combining BECs and optical cavities have been reported recently, coupling BECs to strong-coupling cavities has remained an elusive goal. Here we report such an experiment, which is made possible by combining a new type of fibre-based cavity with atom chip technology. This allows single-atom cQED experiments with a simplified setup and realizes the new situation of N atoms in a cavity each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field. This gives rise to a controlled, tunable coupling rate, as we confirm experimentally. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting which we attribute to the atomic hyperfine structure.Comment: 20 pages. Revised version following referees' comments. Detailed notes adde

    Fiber Fabry-Perot cavity with high finesse

    Full text link
    We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.Comment: Submitted to New J. Phys
    corecore