6 research outputs found

    Archival search for historical atypical scrapie in sheep reveals evidence for mixed infections

    Get PDF
    Flaviviruses are arthropod-borne viruses found worldwide and are responsible for significant human and veterinary diseases, including dengue, Zika, and West Nile fever. Some flaviviruses are insect specific and replicate only in mosquitoes. We report a genetically divergent group of insect-specific flaviviruses from Anopheles mosquitoes that do not replicate in arthropod cell lines or heterologous Anopheles species, exhibiting unprecedented specialization for their host species. Determination of the complete sequences of the RNA genomes of three of these viruses, Karumba virus (KRBV), Haslams Creek virus, and Mac Peak virus (McPV), that are found in high prevalence in some Anopheles mosquito populations and detection of virus-specific proteins, replicative double-stranded RNA, and small interfering RNA responses in the host mosquito species provided strong evidence of a functional replicating virus in the mosquito midgut. Analysis of nucleotide composition in the KRBV and McPV sequences also revealed a pattern consistent with the virus evolving to replicate only in insects. These findings represent a significant advance in our knowledge of mosquito-borne flavivirus ecology, host restriction, and evolution

    Structural analysis of 3’UTRs in insect flaviviruses reveals novel determinants of sfRNA biogenesis and provides new insights into flavivirus evolution

    No full text
    Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3’UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3’UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3’UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding

    Genetic, Morphological and Antigenic Relationships between Mesonivirus Isolates from Australian Mosquitoes and Evidence for Their Horizontal Transmission.

    Get PDF
    The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus-CASV) and Alphamesonivirus 1 (Nam Dinh virus-NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95-96% nt and 91-92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature

    Tenth scientific biennial meeting of the australasian virology society - AVS10 2019

    Get PDF
    The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia
    corecore