121 research outputs found
COMBINED EFFECTS OF TEMPERATURE AND HEAVY METALS ON THE PERFORMANCE OF THE GIANT SALMONFLY.
In many freshwater ecosystems, communities of aquatic insects are facing the combined stresses of warmer waters due to climate change and increased exposure to heavy metal toxicants. Although each stressor may threaten aquatic insects independently, they also likely interact in important ways to affect insect physiology and performance. Here we investigate this potential interaction using two populations of aquatic nymphs of the giant salmonfly, Pteronarcys californica, collected from adjacent rivers in Montana: naïve individuals from Rock Creek, a relatively pristine stream, and individuals from the Upper Clark Fork River, which has a history of heavy metal pollution and higher temperatures. We used a factorial design that exposed nymphs from the two rivers to one of two varying concentrations of metals (copper or lead) in combination with one of two temperatures (12 or 18 °C). We measured survival, growth, and upper critical temperature (CTMAX), as well as individual heavy metal concentration. Nymphs from both rivers exposed to the highest amounts of copper showed reduced survival and growth rates, and their CTMAX were reduced by up to 10 °C. By contrast, lead had little effect on survival, growth, or CTMAX of either population. These results suggest that acute exposure to heavy metals may reduce the ability of aquatic insects to withstand exposure to climate-induced warming
The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network
Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 ecoâclimatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the groundâbased measurements of C and nutrients in soils and plants based on overarching or âhighâlevelâ requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable endâusers to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, oneâtime effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing longâterm trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about longâterm changes in continentalâscale biogeochemical cycles, and is predicted to inspire further processâbased research
kNN Classification of Epilepsy Brainwaves
Epilepsy is a disorder of the normal brain function by the existence of abnormal synchronous discharges in large groups of neurons in brain structures and it is estimated about 1% of the worldâs population suffers from this disease [Tzallas et al., 2009]. It has been reported that the brainwave of
Epilepsy patient mostly in sharp, spike and complex wave pattern [Tzallas et al., 2009]. In addition, Epilepsy brainwaves pattern lies in wide variety of Electroencephalogram (EEG) signals in formed of low-amplitude and polyspikes activity [Vargas et al., 2011]. Generally, this disease was examined through the brainwaves or EEG signals by clinical neurulogists. An EEG is a device to record the brainwaves in term of electrical activity from the brain. Brain patterns from wave shapes that are commonly sinusoidal and measured from peak to peak that range from 0.5 ÎŒV to 100 ÎŒV in amplitude. Moreover, the brainwaves have been categorized into four frequency bands, Beta (>13 Hz), Alpha (8-13 Hz), Theta (4-8 Hz) and Delta (0.5-4 Hz). All
the frequency bands will be used to characterize the Epilepsy brainwave in terms of amplitude (voltage) and frequency [Mustafa et al., 2013]. The Epilepsy brainwaves were downloaded from http://www.vis.caltech.edu/~rodri/data.htm of Fp1 and Fp2 channels which is from rats. The brainwaves consists Epilepsy and non-Epilepsy samples. Then, the brainwaves were pre-processed to remove artefact (noise). Various methods had been introduced to detect spike-wave discharge in Epilepsy patient brainwave. Brainwave is nonstationary signal, therefore, time-frequency analysis is appropriate methods to analyse the signals[Tzallas et al., 2009, Vargas et al., 2011]. One of the most popular time-frequency analyses is ShortTime Fourier Transform (STFT). After the brainwaves were pre-processed, STFT was employed to
the clean brainwaves. The STFT spectrogram was generated for four frequency bands of the samples
Plant and Microbial Responses to Repeated Cu(OH)2 Nanopesticide Exposures Under Different Fertilization Levels in an Agro-Ecosystem
The environmental fate and potential impacts of nanopesticides on agroecosystems under realistic agricultural conditions are poorly understood. As a result, the benefits and risks of these novel formulations compared to the conventional products are currently unclear. Here, we examined the effects of repeated realistic exposures of the Cu(OH)2 nanopesticide, Kocide 3000, on simulated agricultural pastureland in an outdoor mesocosm experiment over 1 year. The Kocide applications were performed alongside three different mineral fertilization levels (Ambient, Low, and High) to assess the environmental impacts of this nanopesticide under low-input or conventional farming scenarios. The effects of Kocide over time were monitored on forage biomass, plant mineral nutrient content, plant-associated non-target microorganisms (i.e., N-fixing bacteria or mycorrhizal fungi) and six soil microbial enzyme activities. We observed that three sequential Kocide applications had no negative effects on forage biomass, root mycorrhizal colonization or soil nitrogen fixation rates. In the Low and High fertilization treatments, we observed a significant increase in aboveground plant biomass after the second Kocide exposure (+14% and +27%, respectively). Soil microbial enzyme activities were significantly reduced in the short-term after the first exposure (day 15) in the Ambient (-28% to -82%) and Low fertilization (-25% to -47%) but not in the High fertilization treatment. However, 2 months later, enzyme activities were similar across treatments and were either unresponsive or responded positively to subsequent Kocide additions. There appeared to be some long-term effects of Kocide exposure, as 6 months after the last Kocide exposure (day 365), both beta-glucosidase (-57% in Ambient and -40% in High fertilization) and phosphatase activities (-47% in Ambient fertilization) were significantly reduced in the mesocosms exposed to the nanopesticide. These results suggest that when used in conventional farming with high fertilization rates, Kocide applications did not lead to marked adverse effects on forage biomass production and key plantâmicroorganism interactions over a growing season. However, in the context of low-input organic farming for which this nanopesticide is approved, Kocide applications may have some unintended detrimental effects on microbially mediated soil processes involved in carbon and phosphorus cycling
Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kgâ1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles
- âŠ