170 research outputs found

    lluminism in the Age of Minerva : Pyotr Ivanovich Melissino (1726–1797) and High-Degree Freemasonry in Catherine the Great's Russia, 1762–1782

    Get PDF
    This article draws on a rare extant manuscript of the Melissino Rite, preserved in the archives of the Prince Fredrik Masonic Centre in The Hague, as well as on other primary material, in order to examine the pivotal role played by Pyotr Ivanovich Melissino (1726-1797) in forming an Illuminist-Masonic milieu in St. Petersburg from the mid-1760s. Melissino and his high-grade Masonic Rite have hitherto been largely overlooked by scholars, yet this article aims to emphasize the formative influence he played in Russia in creating an “invisible chapter” in which select initiates could embrace currents of Illuminist thought (alchemy, theosophy and Christian Kabbalah in particular). Scholars have principally examined the development of Illuminism in the second half of the eighteenth century within the restricted space of the Chapters of high-degree Freemasonry in France (and to a lesser extent in Germany and other European countries). Little attention has been paid to Illuminism in Russia prior to rise of the Rosicrucian Circle associated with Nikolai Novikov and Johan Schwarz in Moscow in the 1780s. Thus, this article seeks to re-examine the Melissino Rite as part of a pan-European phenomenon, whilst also highlighting its importance within the sizeable aristocratic Masonic milieu in Russia

    Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer

    Get PDF
    Measurements of low-frequency sound propagation over the areas of the Australian continental shelf, where the bottom sediments consist primarily of calcarenite, have revealed that acoustic transmission losses are generally much higher than those observed over other continental shelves and remain relatively low only in a few narrow frequency bands. This paper considers this phenomenon and provides a physical interpretation in terms of normal modes in shallow water over a layered elastic seabed with a shear wave speed comparable to but lower than the water-column sound speed. A theoretical analysis and numerical modeling show that, in such environments, low attenuation of underwater sound is expected only in narrow frequency bands just above the modal critical frequencies which in turn are governed primarily by the water depth and compressional wave speed in the seabed. In addition, the effect of a thin layer of harder cap-rock overlaying less consolidated sediments is considered. Low-frequency transmission loss data collected from an offshore seismic survey in Bass Strait on the southern Australian continental shelf are analyzed and shown to be in broad agreement with the numerical predictions based on the theoretical analysis and modeling using an elastic parabolic equation solution for range-dependent bathymetry

    The Application of Modern Optimization Packages in Multisensor Data Assimilation

    Get PDF
    PyDDA is an expandable framework that integrates data from weather radars and forecasting models using SciPys optimization package to create meteorological fields

    PyDDA: A New Pythonic Wind Retrieval Package

    Get PDF
    PyDDA (Pythonic Direct Data Assimilation) is a new community framework aimed at wind retrievals that depends only upon utilities in the SciPy ecosystem such as scipy, numpy, and dask. It can support retrievals of winds using information from weather radar networks constrained by high resolution forecast models over grids that cover thousands of kilometers at kilometer-scale resolution. Unlike past wind retrieval packages, this package can be installed using anaconda for easy installation and, with a focus on ease of use can retrieve winds from gridded radar and model data with just a few lines of code. The package is currently available for download at https://github.com/openradar/PyDDA

    The development of rainfall retrievals from radar at Darwin

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.5194/amt-14-53-2021The U.S. Department of Energy Atmospheric Radiation Measurement program Tropical Western Pacific site hosted a C-band polarization (CPOL) radar in Darwin, Australia. It provides 2 decades of tropical rainfall characteristics useful for validating global circulation models. Rainfall retrievals from radar assume characteristics about the droplet size distribution (DSD) that vary significantly. To minimize the uncertainty associated with DSD variability, new radar rainfall techniques use dual polarization and specific attenuation estimates. This study challenges the applicability of several specific attenuation and dual-polarization-based rainfall estimators in tropical settings using a 4-year archive of Darwin disdrometer datasets in conjunction with CPOL observations. This assessment is based on three metrics: statistical uncertainty estimates, principal component analysis (PCA), and comparisons of various retrievals from CPOL data. The PCA shows that the variability in R can be consistently attributed to reflectivity, but dependence on dualpolarization quantities was wavelength dependent for 1 10 mm h−1 . Rainfall estimates during these conditions primarily originate from deep convective clouds with median drop diameters greater than 1.5 mm. An uncertainty analysis and intercomparison with CPOL show that a Colorado State University blended technique for tropical oceans, with modified estimators developed from video disdrometer observations, is most appropriate for use in all cases, such as when 1 10 mm h−1 (deeper convective rain).Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the Climate Model Development and Validation activity. NOAA PSL contributes effort with funding from the Weather Program Office’s Precipitation Prediction Grand Challenge. The development of the Python ARM radar toolkit was funded by the ARM program part of the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE). The work from Monash University and the Bureau of Meteorology was partly supported by the U.S. Department of Energy Atmospheric Systems Research Program through the grant DE-SC0014063. BD contributions are supported by the U.S. Department of Energy Atmospheric Systems Research Program through the grant DE-SC0017977

    An Integrated Approach to Weather Radar Calibration and Monitoring Using Ground Clutter and Satellite Comparisons

    Get PDF
    The stability and accuracy of weather radar reflectivity calibration are imperative for quantitative applications, such as rainfall estimation, severe weather monitoring and nowcasting, and assimilation in numerical weather prediction models. Various radar calibration and monitoring techniques have been developed, but only recently have integrated approaches been proposed, that is, using different calibration techniques in combination. In this paper the following three techniques are used: 1) ground clutter monitoring, 2) comparisons with spaceborne radars, and 3) the self-consistency of polarimetric variables. These techniques are applied to a C-band polarimetric radar (CPOL) located in the Australian tropics since 1998. The ground clutter monitoring technique is applied to each radar volumetric scan and provides a means to reliably detect changes in calibration, relative to a baseline. It is remarkably stable to within a standard deviation of 0.1 dB (decibels). To obtain an absolute calibration value, CPOL observations are compared to spaceborne radars on board TRMM (Tropical Rainfall Measuring Mission) and GPM (Global Precipitation Measurement) using a volume-matching technique. Using an iterative procedure and stable calibration periods identified by the ground echoes technique, we improve the accuracy of this technique to about 1 dB. Finally, we review the self-consistency technique and constrain its assumptions using results from the hybrid TRMM-GPM and ground echo technique. Small changes in the self-consistency parameterization can lead to 5 dB of variation in the reflectivity calibration. We find that the drop-shape model of Brandes et al. with a standard deviation of the canting angle of 12 degrees best matches our dataset

    A genomics-informed, SNP association study reveals FBLN1 and FABP4 as contributing to resistance to fleece rot in Australian Merino sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fleece rot (FR) and body-strike of Merino sheep by the sheep blowfly <it>Lucilia cuprina </it>are major problems for the Australian wool industry, causing significant losses as a result of increased management costs coupled with reduced wool productivity and quality. In addition to direct effects on fleece quality, fleece rot is a major predisposing factor to blowfly strike on the body of sheep. In order to investigate the genetic drivers of resistance to fleece rot, we constructed a combined ovine-bovine cDNA microarray of almost 12,000 probes including 6,125 skin expressed sequence tags and 5,760 anonymous clones obtained from skin subtracted libraries derived from fleece rot resistant and susceptible animals. This microarray platform was used to profile the gene expression changes between skin samples of six resistant and six susceptible animals taken immediately before, during and after FR induction. Mixed-model equations were employed to normalize the data and 155 genes were found to be differentially expressed (DE). Ten DE genes were selected for validation using real-time PCR on independent skin samples. The genomic regions of a further 5 DE genes were surveyed to identify single nucleotide polymorphisms (SNP) that were genotyped across three populations for their associations with fleece rot resistance.</p> <p>Results</p> <p>The majority of the DE genes originated from the fleece rot subtracted libraries and over-representing gene ontology terms included defense response to bacterium and epidermis development, indicating a role of these processes in modulating the sheep's response to fleece rot. We focused on genes that contribute to the physical barrier function of skin, including keratins, collagens, fibulin and lipid proteins, to identify SNPs that were associated to fleece rot scores.</p> <p>Conclusions</p> <p>We identified FBLN1 (fibulin) and FABP4 (fatty acid binding protein 4) as key factors in sheep's resistance to fleece rot. Validation of these markers in other populations could lead to vital tests for marker assisted selection that will ultimately increase the natural fleece rot resistance of Merino sheep.</p

    Use of Polarimetric Radar Measurements to Constrain Simulated Convective Cell Evolution: A Pilot Study with Lagrangian Tracking

    Get PDF
    To probe the potential value of a radar-driven field campaign to constrain simulation of isolated convection subject to a strong aerosol perturbation, convective cells observed by the operational KHGX weather radar in the vicinity of Houston, Texas, are examined individually and statistically. Cells observed in a single case study of onshore flow conditions during July 2013 are first examined and compared with cells in a regional model simulation. Observed and simulated cells are objectively identified and tracked from observed or calculated positive specific differential phase (K(sub DP)) above the melting level, which is related to the presence of supercooled liquid water. Several observed and simulated cells are subjectively selected for further examination. Below the melting level, we compare sequential cross sections of retrieved and simulated raindrop size distribution parameters. Above the melting level, we examine time series of KDP and radar differential reflectivity (Z(sub DR)) statistics from observations and calculated from simulated supercooled rain properties, alongside simulated vertical wind and supercooled rain mixing ratio statistics. Results indicate that the operational weather radar measurements offer multiple constraints on the properties of simulated convective cells, with substantial value added from derived K(sub DP) and retrieved rain properties. The value of collocated three-dimensional lightning mapping array measurements, which are relatively rare in the continental US, supports the choice of Houston as a suitable location for future field studies to improve the simulation and understanding of convective updraft physics. However, rapid evolution of cells between routine volume scans motivates consideration of adaptive scan strategies or radar imaging technologies to amend operational weather radar capabilities. A 3-year climatology of isolated cell tracks, prepared using a more efficient algorithm, yields additional relevant information. Isolated cells are found within the KHGX domain on roughly 40 % of days year-round, with greatest concentration in the northwest quadrant, but roughly 5-fold more cells occur during June through September. During this enhanced occurrence period, the cells initiate following a strong diurnal cycle that peaks in the early afternoon, typically follow a south-to-north flow, and dissipate within 1 h, consistent with the case study examples. Statistics indicate that 150 isolated cells initiate and dissipate within 70 km of the KHGX radar during the enhanced occurrence period annually, and roughly 10 times as many within 200 km, suitable for multi-instrument Lagrangian observation strategies. In addition to ancillary meteorological and aerosol measurements, robust vertical wind speed retrievals would add substantial value to a radar-driven field campaign
    corecore