6 research outputs found

    Long-distance hormone transport via the phloem

    Get PDF
    Several key plant hormones are synthesised in the shoot and are advected within the phloem to the root tip. In the root tip, these hormones regulate growth and developmental processes, and responses to environmental cues. However, we lack understanding of how environmental factors and biological parameters affect the delivery of hormones to the root tip. In this study, we build on existing models of phloem flow to develop a mathematical model of sugar transport alongside the transport of a generic hormone. We derive the equations for osmotically driven flow in a long, thin pipe with spatially varying membrane properties to capture the phloem loading and unloading zones. Motivated by experimental findings, we formulate solute membrane transport in terms of passive and active components, and incorporate solute unloading via bulk flow (i.e. advection with the water efflux) by including the Staverman reflection coefficient. We use the model to investigate the coupling between the sugar and hormone dynamics. The model predicts that environmental cues that lead to an increase in active sugar loading, an increase in bulk flow sugar unloading or a decrease in the relative root sugar concentration result in an increase in phloem transport velocity. Furthermore, the model reveals that such increases in phloem transport velocity result in an increase in hormone delivery to the root tip for passively loaded hormones

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Oral once-daily berotralstat for the prevention of hereditary angioedema attacks: A randomized, double-blind, placebo-controlled phase 3 trial

    No full text
    Background: Berotralstat (BCX7353) is an oral, once-daily inhibitor of plasma kallikrein in development for the prophylaxis of hereditary angioedema (HAE) attacks. Objective: Our aim was to determine the efficacy, safety, and tolerability of berotralstat in patients with HAE over a 24-week treatment period (the phase 3 APeX-2 trial). Methods: APeX-2 was a double-blind, parallel-group study that randomized patients at 40 sites in 11 countries 1:1:1 to receive once-daily berotralstat in a dose of 110 mg or 150 mg or placebo (Clinicaltrials.gov identifier NCT03485911). Patients aged 12 years or older with HAE due to C1 inhibitor deficiency and at least 2 investigator-confirmed HAE attacks in the first 56 days of a prospective run-in period were eligible. The primary efficacy end point was the rate of investigator-confirmed HAE attacks during the 24-week treatment period. Results: A total of 121 patients were randomized; 120 of them received at least 1 dose of the study drug (n = 41, 40, and 39 in the 110-mg dose of berotralstat, 150-mg of dose berotralstat, and placebo groups, respectively). Berotralstat demonstrated a significant reduction in attack rate at both 110 mg (1.65 attacks per month; P = .024) and 150 mg (1.31 attacks per month; P < .001) relative to placebo (2.35 attacks per month). The most frequent treatment-emergent adverse events that occurred more with berotralstat than with placebo were abdominal pain, vomiting, diarrhea, and back pain. No drug-related serious treatment-emergent adverse events occurred. Conclusion: Both the 110-mg and 150-mg doses of berotralstat reduced HAE attack rates compared with placebo and were safe and generally well tolerated. The most favorable benefit-to-risk profile was observed at a dose of 150 mg per day

    Task and Institutional Influences on Managers' Mental Models of Competition

    No full text
    From institutional theory, we argue (a) that the competitive, or task environment may encourage divergence of management cognition between organizations, management functions and amongst senior managers, and (b) that the institutional environment may encourage cognitive convergence at the level of the industry, the strategic group and within institutionalized practices linked to management functions and level. Using management cognition of competition as a vehicle and two cognitive mapping methods, we test a series of competing propositions amongst 32 managers in the UK personal financial services industry, an industry that evidences both task and institutional characteristics. Our findings indicate neither the superiority of exclusively task nor institutional explanations of management cognition. However, the results do indicate some influence of the institutional environment, most noticeably through the convergence of mental models within middle managers across the industry. The results also indicate some influence of the task environment, through cognitive differences across organizations and greater differentiation amongst senior managers' mental models. We interpret our results by referring to the usefulness of distinguishing between task and institutional environments in management cognition and strategic management research
    corecore