42,373 research outputs found

    Factorization is not violated

    Get PDF
    We show that existing proofs of factorization imply the cancellation of certain multiladder contributions that Gotsman, Levin, and Maor had suggested would invalidate the basic factorization theorem in QCD. No modifications of the original argument are necessary, although the details of the example offer useful insight into the mechanisms of factorization.Comment: 11 pages including 10 figure

    Fully Unintegrated Parton Correlation Functions and Factorization in Lowest Order Hard Scattering

    Full text link
    Motivated by the need to correct the potentially large kinematic errors in approximations used in the standard formulation of perturbative QCD, we reformulate deeply inelastic lepton-proton scattering in terms of gauge invariant, universal parton correlation functions which depend on all components of parton four-momentum. Currently, different hard QCD processes are described by very different perturbative formalisms, each relying on its own set of kinematical approximations. In this paper we show how to set up formalism that avoids approximations on final-state momenta, and thus has a very general domain of applicability. The use of exact kinematics introduces a number of significant conceptual shifts already at leading order, and tightly constrains the formalism. We show how to define parton correlation functions that generalize the concepts of parton density, fragmentation function, and soft factor. After setting up a general subtraction formalism, we obtain a factorization theorem. To avoid complications with Ward identities the full derivation is restricted to abelian gauge theories; even so the resulting structure is highly suggestive of a similar treatment for non-abelian gauge theories.Comment: 44 pages, 69 figures typos fixed, clarifications and second appendix adde

    Quark fragmentation in the θ\theta-vacuum

    Full text link
    The vacuum of Quantum Chromodynamics is a superposition of degenerate states with different topological numbers that are connected by tunneling (the θ\theta-vacuum). The tunneling events are due to topologically non-trivial configurations of gauge fields (e.g. the instantons) that induce local \p-odd domains in Minkowski space-time. We study the quark fragmentation in this topologically non-trivial QCD background. We find that even though QCD globally conserves \p and \cp symmetries, two new kinds of \p-odd fragmentation functions emerge. They generate interesting dihadron correlations: one is the azimuthal angle correlation cos(ϕ1+ϕ2)\sim \cos(\phi_1 + \phi_2) usually referred to as the Collins effect, and the other is the \p-odd correlation sin(ϕ1+ϕ2)\sim \sin(\phi_1 + \phi_2) that vanishes in the cross section summed over many events, but survives on the event-by-event basis. Using the chiral quark model we estimate the magnitude of these new fragmentation functions. We study their experimental manifestations in dihadron production in e+ee^+e^- collisions, and comment on the applicability of our approach in deep-inelastic scattering, proton-proton and heavy ion collisions.Comment: 4 pages, 2 figure

    Massive quark scattering at strong coupling from AdS/CFT

    Full text link
    We extend the analysis of Alday and Maldacena for obtaining gluon scattering amplitudes at strong coupling to include external massive quark states. Our quarks are actually the N=2 hypermultiplets which arise when D7-brane probes are included in the AdS_5 x S^5 geometry. We work in the quenched approximation, treating the N=2 matter multiplets as external sources coupled to the N=4 SYM fields. We first derive appropriate massive-particle boundary conditions for the string scattering worldsheets. We then find an exact worldsheet which corresponds to the scattering of two massive quarks and two massless gluons and extract from this the associated scattering amplitude. We also find the worldsheet and amplitude for the scattering of four massive quarks. Our worldsheet solutions reduce to the four massless gluon solution of Alday and Maldacena in the limit of zero quark mass. The amplitudes we compute can also be interpreted in terms of 2-2 scattering involving gluons and massive W-bosons.Comment: 46 pages, 11 figures, v4: additional comments added to intr

    A translator writing system for microcomputer high-level languages and assemblers

    Get PDF
    In order to implement high level languages whenever possible, a translator writing system of advanced design was developed. It is intended for routine production use by many programmers working on different projects. As well as a fairly conventional parser generator, it includes a system for the rapid generation of table driven code generators. The parser generator was developed from a prototype version. The translator writing system includes various tools for the management of the source text of a compiler under construction. In addition, it supplies various default source code sections so that its output is always compilable and executable. The system thereby encourages iterative enhancement as a development methodology by ensuring an executable program from the earliest stages of a compiler development project. The translator writing system includes PASCAL/48 compiler, three assemblers, and two compilers for a subset of HAL/S

    Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma

    Full text link
    With a consistent definition of transverse-momentum dependent (TMD) light-cone wave function, we show that the amplitude for the process γπ0γ\gamma^* \pi^0 \to\gamma can be factorized when the virtuality of the initial photon is large. In contrast to the collinear factorization in which the amplitude is factorized as a convolution of the standard light-cone wave function and a hard part, the TMD factorization yields a convolution of a TMD light-cone wave function, a soft factor and a hard part. We explicitly show that the TMD factorization holds at one loop level. It is expected that the factorization holds beyond one-loop level because the cancelation of soft divergences is on a diagram-by-diagram basis. We also show that the TMD factorization helps to resum large logarithms of type ln2x\ln^2x.Comment: Published version in Phys.Rev.D75:014014,200
    corecore