400 research outputs found

    Elastic cross sections for high energy hadron-hadron scattering

    Full text link
    This report discusses some results on differential cross sections for high energy and small momentum transfer elastic hadron-hadron scattering in QCD, using a functional integral approach. In particulary a matrix cumulant expansion for the vacuum expectation values of lightlike Wegner-Wilson loops, which governs the hadronic amplitudes, is presented. The cumulants are evaluated using the model of the stochastic vacuum.Comment: 4 pages, 2 eps figures. Talk at the High Energy Conference on Quantum Chromodynamics (QCD'98), Montpellier, July 199

    Probing generalized parton distributions in pi N -> l+ l- N

    Full text link
    We study the exclusive reactions pi- p -> l+ l- n and pi+ n -> l+ l- p$ in view of possible future experiments with high-intensity pion beams. For large invariant mass of the lepton pair l+ l- and small squared momentum transfer to the nucleon these are hard-scattering processes providing access to generalized parton distributions. We estimate the cross section for these reactions, explore their connection with the pion form factor, and discuss the role they can play in improving our understanding of the relevant reaction mechanisms.Comment: 13 pages, 5 figure

    Dinamička simulacija mehaničkih opterećenja – pristup zasnovan na svojstvima industrijskih elektromotornih pogona

    Get PDF
    Dynamic emulation of mechanical loads presents a modern and interesting approach for testing and validating performance of electrical drives without a real mechanical load included in the test rig. The paper presents an approach to dynamic emulation of mechanical loads when the load torque and inertia mass of emulated load can be significantly greater than that of laboratory test rig. Closed-loop control of load torque and feedforward compensation of inertia and friction torques are used in a test rig. The approach is focused on the use with standard industrial converters. The described method can be used for design and validation of speed control algorithms in mechatronic applications. Experimental results with the emulation of linear loads are presented in end of the paper.Dinamička simulacija mehaničkih opterećenja predstavlja moderan i zanimljiv pristup testiranju i validaciji ponašanja elektromotornih pogona bez uključenog stvarnog mehaničkog opterećenja u eksperimentalni postav. U radu je predstavljen pristup s dinamičkom simulacijom mehaničkih opterećenja za slučaj kada moment tereta ili moment tromosti simuliranog tereta mogu biti daleko veći od onih dostupnih u eksperimentalnom postavu. U postavu se koristi upravljanje momentom tereta u zatvorenoj petlji uz unaprijednu petlju kompenzacije momenta tromosti i momenata trenja. Pristup je usmjeren na upotrebu standardnih industrijskih pretvarača. Opisana metoda može se koristiti za sintezu i validaciju algoritama za upravljanje po brzini u mehatroničkim primjenama. U radu su predstavljeni eksperimentalni rezultati za slučaj simulacije linearnih tereta

    Temporal patterns in artificial reaction networks.

    Get PDF
    The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, and S-Systems. This paper discusses the temporal aspects of the ARN model using robotic gaits as an example and compares it with properties of Artificial Neural Networks. The comparison shows that the ARN based network has similar functionality

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a cc-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    Supermassive Binaries and Extragalactic Jets

    Get PDF
    Some quasars show Doppler shifted broad emission line peaks. I give new statistics of the occurrence of these peaks and show that, while the most spectacular cases are in quasars with strong radio jets inclined to the line of sight, they are also almost as common in radio-quiet quasars. Theories of the origin of the peaks are reviewed and it is argued that the displaced peaks are most likely produced by the supermassive binary model. The separations of the peaks in the 3C 390.3-type objects are consistent with orientation-dependent "unified models" of quasar activity. If the supermassive binary model is correct, all members of "the jet set" (astrophysical objects showing jets) could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see http://www.aas.org/ApJ/v464n2/5736/5736.html
    corecore