3,196 research outputs found

    Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking

    Get PDF
    Given an object model and a black-box measure of similarity between the model and candidate targets, we consider visual object tracking as a numerical optimization problem. During normal tracking conditions when the object is visible from frame to frame, local optimization is used to track the local mode of the similarity measure in a parameter space of translation, rotation and scale. However, when the object becomes partially or totally occluded, such local tracking is prone to failure, especially when common prediction techniques like the Kalman filter do not provide a good estimate of object parameters in future frames. To recover from these inevitable tracking failures, we consider object detection as a global optimization problem and solve it via Adaptive Simulated Annealing (ASA), a method that avoids becoming trapped at local modes and is much faster than exhaustive search. As a Monte Carlo approach, ASA stochastically samples the parameter space, in contrast to local deterministic search. We apply cluster analysis on the sampled parameter space to redetect the object and renew the local tracker. Our numerical hybrid local and global mode-seeking tracker is validated on challenging airborne videos with heavy occlusion and large camera motions. Our approach outperforms state-of-the-art trackers on the VIVID benchmark datasets. 1

    Bioreactor scalability: laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors

    Get PDF
    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance

    Image-based Stability Quantification

    Full text link
    Quantitative evaluation of human stability using foot pressure/force measurement hardware and motion capture (mocap) technology is expensive, time consuming, and restricted to the laboratory. We propose a novel image-based method to estimate three key components for stability computation: Center of Mass (CoM), Base of Support (BoS), and Center of Pressure (CoP). Furthermore, we quantitatively validate our image-based methods for computing two classic stability measures, CoMtoCoP and CoMtoBoS distances, against values generated directly from laboratory-based sensor output (ground truth) using a publicly available, multi-modality (mocap, foot pressure, two-view videos), ten-subject human motion dataset. Using Leave One Subject Out (LOSO) cross-validation, experimental results show: 1) our image-based CoM estimation method (CoMNet) consistently outperforms state-of-the-art inertial sensor-based CoM estimation techniques; 2) stability computed by our image-based method combined with insole foot pressure sensor data produces consistent, strong, and statistically significant correlation with ground truth stability measures (CoMtoCoP r = 0.79 p < 0.001, CoMtoBoS r = 0.75 p < 0.001); 3) our fully image-based estimation of stability produces consistent, positive, and statistically significant correlation on the two stability metrics (CoMtoCoP r = 0.31 p < 0.001, CoMtoBoS r = 0.22 p < 0.043). Our study provides promising quantitative evidence for the feasibility of image-based stability evaluation in natural environments

    The VISTA Science Archive

    Full text link
    We describe the VISTA Science Archive (VSA) and its first public release of data from five of the six VISTA Public Surveys. The VSA exists to support the VISTA Surveys through their lifecycle: the VISTA Public Survey consortia can use it during their quality control assessment of survey data products before submission to the ESO Science Archive Facility (ESO SAF); it supports their exploitation of survey data prior to its publication through the ESO SAF; and, subsequently, it provides the wider community with survey science exploitation tools that complement the data product repository functionality of the ESO SAF. This paper has been written in conjunction with the first public release of public survey data through the VSA and is designed to help its users understand the data products available and how the functionality of the VSA supports their varied science goals. We describe the design of the database and outline the database-driven curation processes that take data from nightly pipeline-processed and calibrated FITS files to create science-ready survey datasets. Much of this design, and the codebase implementing it, derives from our earlier WFCAM Science Archive (WSA), so this paper concentrates on the VISTA-specific aspects and on improvements made to the system in the light of experience gained in operating the WSA.Comment: 22 pages, 16 figures. Minor edits to fonts and typos after sub-editting. Published in A&

    The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z=1.457

    Get PDF
    We present new spectroscopic observations of the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.457, obtained with the DEIMOS instrument at the W. M. Keck Observatory, and the FORS2 instrument on the ESO Very Large Telescope. Within the cluster virial radius, as estimated from the cluster X-ray properties, we increase the number of known spectroscopic cluster members to 17 objects, and calculate the line of sight velocity dispersion of the cluster to be 580+/-140 km/s. We find mild evidence that the velocity distribution of galaxies within the virial radius deviates from a single Gaussian. We show that the properties of J2215.9-1738 are inconsistent with self-similar evolution of local X-ray scaling relations, finding that the cluster is underluminous given its X-ray temperature, and that the intracluster medium contains ~2-3 times the kinetic energy per unit mass of the cluster galaxies. These results can perhaps be explained if the cluster is observed in the aftermath of an off-axis merger. Alternatively, heating of the intracluster medium through supernovae and/or Active Galactic Nuclei activity, as is required to explain the observed slope of the local X-ray luminosity-temperature relation, may be responsible.Comment: 13 pages, 6 figures, accepted for publication in Ap

    Guide to chicken health and management in Ethiopia: For farmers and development agents

    No full text
    Biotechnology and Biological Sciences Research Council, United KingdomDepartment for International Development, United Kingdo
    • …
    corecore