283 research outputs found

    Diffusion-limited reaction for the one-dimensional trap system

    Full text link
    We have previously discussed the one-dimensional multitrap system of finite range and found the somewhat unexpected result that the larger is the number of imperfect traps the higher is the transmission through them. We discuss in this work the effect of a small number of such traps arrayed along either a constant or a variable finite spatial section. It is shown that under specific conditions, to be described in the following, the remarked high transmission may be obtained for this case also. Thus, compared to the theoretical large number of traps case these results may be experimentally applied to real phenomenaComment: 18 pages, 8 PS Figures; 3 former figures were removed, a new section added and the representation is improve

    Joint Resummation for Higgs Production

    Full text link
    We study the application of the joint resummation formalism to Higgs production via gluon-gluon fusion at the LHC, defining inverse transforms by analytic continuation. We work at next-to-leading logarithmic accuracy. We find that at low Q_T the resummed Higgs Q_T distributions are comparable in the joint and pure-Q_T formalisms, with relatively small influence from threshold enhancement in this range. We find a modest (about ten percent) decrease in the inclusive cross section, relative to pure threshold resummation.Comment: 22 pages, LaTeX, 5 figures as eps file

    Exclusive Higgs Boson Production with bottom quarks at Hadron Colliders

    Full text link
    We present the next-to-leading order QCD corrected rate for the production of a scalar Higgs boson with a pair of high p_T bottom and anti-bottom quarks at the Tevatron and at the Large Hadron Collider. Results are given for both the Standard Model and the Minimal Supersymmetric Standard Model. The exclusive b-bbar-h production rate is small in the Standard Model, but it can be greatly enhanced in the Minimal Supersymmetric Standard Model for large tan(beta), making b-bbar-h an important discovery mode. We find that the next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling.Comment: 27 pages, 17 figures, RevTeX

    Magnetic and electric field effect on the photoelectron emission from prototype LHC bean screen material.

    Get PDF
    This paper describes experimental studies of the effect of a dipole field on the photoelectron emission and on the photon reflectivities from LHC beam screen material. These studies were performed using synchrotron radiation from the VEPP-2M storage ring at BINP (Novosibirsk). The particular surface roughness and geometry of the prototype LHC beam screen material requires dedicated experimental measurements. The experiments were performed under conditions close to those expected in the LHC. An important result obtained is that a dipole magnetic field attenuates the photoelectron emission from surface by more than two orders of magnitude with the magnetic field aligned parallel to the surface. The measurements of photon reflectivities, forward scattered and diffuse, and the azimuthal distribution of emitted photoelectrons from the same material are reported. These experimental results are important input for the final design of the LHC beam screen

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page

    Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO

    Get PDF
    We consider QCD radiative corrections to vector-boson production in hadron collisions. We present the next-to-next-to-leading order (NNLO) result of the hard-collinear coefficient function for the all-order resummation of logarithmically-enhanced contributions at small transverse momenta. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. The same coefficient function is used in applications of the subtraction method to perform fully-exclusive perturbative calculations up to NNLO.Comment: 13, pages, no figures. arXiv admin note: text overlap with arXiv:1106.465

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute 25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003

    Joint resummation in electroweak boson production

    Full text link
    We present a phenomenological application of the joint resummation formalism to electroweak annihilation processes at measured boson momentum Q_T. This formalism simultaneously resums at next-to-leading logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact parameter transform using a previously described analytic continuation procedure. This leads to a well-defined, resummed perturbative cross section for all nonzero Q_T, which can be compared to resummation carried out directly in Q_T space. From the structure of the resummed expressions, we also determine the form of nonperturbative corrections to the cross section and implement these into our analysis. We obtain a good description of the transverse momentum distribution of Z bosons produced at the Tevatron collider.Comment: 27 pages, LaTeX, 8 figures as eps files. Some additions to earlier version, this version as published in Phys. Rev. D66 (2002) 01401

    Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders

    Full text link
    We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for the associated production of a pseudoscalar Higgs boson with a bottom quark via bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We find that the NLO QCD correction in the MSSM reaches 4040%\sim50% at the LHC and 4545%\sim80% at the Tevatron in our chosen parameter space

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure
    corecore