2,679 research outputs found

    Seed Yield Prediction Models of Four Common Moist-Soil Plant Species in Texas

    Get PDF
    Seed production by moist-soil plant species often varies within and among managed wetlands and on larger landscapes. Quantifying seed production of moist-soil plants can be used to evaluate wetland management strategies and estimate wetland energetic carrying capacity, specifically for waterfowl. In the past, direct estimation techniques were used, but due to excessive personnel and time costs, other indirect methods have been developed. Because indirect seed yield models do not exist for moist-soil plant species in east-central or coastal Texas, we developed direct and indirect methods to model seed production on regional managed wetlands. In September 2004 and 2005, we collected Echinochloa crusgalli (barnyard grass), E. walterii (wild millet), E. colona (jungle rice), and Oryza sativa (cultivated rice) for phytomorphological measurements and seed yield modeling. Initial simple linear and point of origin regression analyses demonstrate strong relationships (P \u3c 0.001) among phytomorphological and dot grid methods in predicting seed production for all four species. These models should help regional wetland managers evaluate moist-soil management success and create models for seed production for other moist-soil plants in this region

    The Geographic Distribution of Bowhead Whales, Balaena mysticetus, in the Bering, Chukchi, and Beaufort Seas: Evidence from Whaleship Records, 1849–1914

    Get PDF
    We have extracted, digitized, and analyzed information about bowhead whales, Balaena mysticetus, contained in records of whaling cruises that were undertaken in the Bering, Chukchi, and Beaufort Seas from 1849 to 1914. Our database consists of 65,000 days of observations which provide insights into whether this bowhead stock may comprise more than one population

    Decomposition of Three Common Moist-Soil Managed Wetland Plant Species

    Get PDF
    Moist-soil wetland management is used to precisely control delivery, duration, and timing of water addition to, and removal from, managed wetlands with targeted responses including germination and growth of desirable moist-soil plant species. Similarly, water delivery and removal drives decomposition of moist-soil plants as well as nutrient cycling within these systems, which is a key driver of productivity in such managed wetlands. Through deployment of litter bags, we examined rate of mass loss and decay coefficients of three locally abundant moist-soil annual species that are potentially valuable wintering-waterfowl food sources (nodding smartweed Persicaria lapathifolia, red-rooted flatnut sedge Cyperus erythrorhizos, and toothcup Ammannia coccinea) within man-made moist-soil managed wetlands on the Richland Creek Wildlife Management Area in East-central Texas. All three species lost nearly 100% of their mass during an 11-mo deployment period, where rate of mass lost and decay coefficient rates were driven by time, because all moist-soil managed wetlands used were inundated for the duration of this study. Plant materials exposed to persistent inundation in shallow wetlands exhibited rates of mass loss typical of the first two stages of decomposition, during which a majority of plant material mass was lost. However, during this study, typical inundation and drawdown regimes were not implemented, which may have delayed or prolonged decomposition processes, because litter bags of focal species were inundated for the duration of this study. Both locally and regionally specific moist-soil management hydroperiod manipulation should include both drawdown and inundation, to incorporate temporal transitions between these conditions. Such practices will allow wetland managers to more expeditiously meet plant management and waterfowl food production goals within moist-soil managed wetlands

    ICML Exploration & Exploitation challenge: Keep it simple!

    No full text
    International audienceRecommendation has become a key feature in the economy of a lot of companies (online shopping, search engines...). There is a lot of work going on regarding recommender systems and there is still a lot to do to improve them. Indeed nowadays in many companies most of the job is done by hand. Moreover even when a supposedly smart recommender system is designed, it is hard to evaluate it without using real audience which obviously involves economic issues. The ICML Exploration & Exploitation challenge is an attempt to make people propose efficient recommendation techniques and particularly focuses on limited computational resources. The challenge also proposes a framework to address the problem of evaluating a recommendation algorithm with real data. We took part in this challenge and achieved the best performances; this paper aims at reporting on this achievement; we also discuss the evaluation process and propose a better one for future challenges of the same kind

    Limited mantle hydration by bending faults at the Middle America Trench

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(1),(2021): e2020JB020982, https://doi.org/10.1029/2020JB020982.Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths >1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to 1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to <0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.National Science Foundation. Grant Numbers: OCE-0625178, OCE-08410632021-06-1

    S-wave splitting in the offshore South Island, New Zealand : insights into plate-boundary deformation

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2829–2847, doi:10.1002/2015GC005882.Local and regional S-wave splitting in the offshore South Island of the New Zealand plate-boundary zone provides constraints on the spatial and depth extent of the anisotropic structure with an enhanced resolution relative to land-based and SKS studies. The combined analysis of offshore and land measurements using splitting tomography suggests plate-boundary shear dominates in the central and northern South Island. The width of this shear zone in the central South Island is about 200 km, but is complicated by stress-controlled anisotropy at shallow levels. In northern South Island, a broader (>200 km) zone of plate-boundary parallel anisotropy is associated with the transitional faulting between the Alpine fault and Hikurangi subduction and the Hikurangi subduction zone itself. These results suggest S-phases of deep events (∼90 km) in the central South Island are sensitive to plate-boundary derived NE-SW aligned anisotropic media in the upper-lithosphere, supporting a “thin viscous sheet” deformation model.United States National Ocean Bottom Seismograph Instrumentation Pool2016-02-2

    Cloning of the cDNA for the human beta 1-adrenergic receptor.

    Full text link

    A Cu2+ (S = 1/2) Kagom\'e Antiferromagnet: MgxCu4-x(OH)6Cl2

    Full text link
    Spin-frustrated systems are one avenue for inducing macroscopic quantum states in materials. However, experimental realization of this goal has been difficult because of the lack of simple materials and, if available, the separation of the unusual magnetic properties arising from exotic magnetic states from behavior associated with chemical disorder, such as site mixing. Here we report the synthesis and magnetic properties of a new series of magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder within the kagom\'e layers is minimized, as directly measured by X-ray diffraction. Our results reveal that many of the properties of these materials and related systems are not due to disorder of the magnetic lattice but rather reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc

    Upper mantle seismic anisotropy at a strike-slip boundary: South Island, New Zealand

    Get PDF
    New shear wave splitting measurements made from stations onshore and offshore the South Island of New Zealand show a zone of anisotropy 100–200 km wide. Measurements in central South Island and up to approximately 100 km offshore from the west coast yield orientations of the fast quasi-shear wave nearly parallel to relative plate motion, with increased obliquity to this orientation observed farther from shore. On the eastern side of the island, fast orientations rotate counterclockwise to become nearly perpendicular to the orientation of relative plate motion approximately 200 km off the east coast. Uniform delay times between the fast and slow quasi-shear waves of nearly 2.0 s onshore continue to stations approximately 100 km off the west coast, after which they decrease to ~1 s at 200 km. Stations more than ~300 km from the west coast show little to no splitting. East coast stations have delay times around 1 s. Simple strain fields calculated from a thin viscous sheet model (representing distributed lithospheric deformation) with strain rates decreasing exponentially to both the northwest and southeast with e-folding dimensions of 25–35 km (approximately 75% of the deformation within a zone 100–140 km wide) match orientations and amounts of observed splitting. A model of deformation localized in the lithosphere and then spreading out in the asthenosphere also yields predictions consistent with observed splitting if, at depths of 100–130 km below the lithosphere, typical grain sizes are ~ 6–7 mm.New Zealand. Ministry of Research, Science, and TechnologyNational Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409564)National Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409609)National Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409835
    corecore