5,224 research outputs found

    Running a Production Grid Site at the London e-Science Centre

    Get PDF
    This paper describes how the London e-Science Centre cluster MARS, a production 400+ Opteron CPU cluster, was integrated into the production Large Hadron Collider Compute Grid. It describes the practical issues that we encountered when deploying and maintaining this system, and details the techniques that were applied to resolve them. Finally, we provide a set of recommendations based on our experiences for grid software development in general that we believe would make the technology more accessible. © 2006 IEEE

    Action synchronization with biological motion

    Get PDF
    The ability to predict the actions of other agents is vital for joint action tasks. Recent theory suggests that action prediction relies on an emulator system that permits observers to use information about their own motor dynamics to predict the actions of other agents. If this is the case, then predictions for self-generated actions should be more accurate than predictions for other-generated actions. We tested this hypothesis by employing a self/other synchronization paradigm where prediction accuracy for recording of self-generated movements was compared with prediction accuracy for other-generated movements. As expected, predictions were more accurate when the observer’s movement dynamics matched the movement dynamics of the recording. This is consistent with that idea that the observer’s movement dynamics influence the predictions they generate

    Frequentist Analysis of the Parameter Space of Minimal Supergravity

    Get PDF
    We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A_0 = B_0 + m_0, and the gravitino mass is fixed by m_{3/2} = m_0. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M_h, B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m_{1/2} and m_0 similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m_{1/2} and m_0 than in the VCMSSM, and one with large m_0 but small m_{1/2}. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere.Comment: 18 pages 27 figure

    Neural encoding of the speech envelope by children with developmental dyslexia.

    Get PDF
    Developmental dyslexia is consistently associated with difficulties in processing phonology (linguistic sound structure) across languages. One view is that dyslexia is characterised by a cognitive impairment in the "phonological representation" of word forms, which arises long before the child presents with a reading problem. Here we investigate a possible neural basis for developmental phonological impairments. We assess the neural quality of speech encoding in children with dyslexia by measuring the accuracy of low-frequency speech envelope encoding using EEG. We tested children with dyslexia and chronological age-matched (CA) and reading-level matched (RL) younger children. Participants listened to semantically-unpredictable sentences in a word report task. The sentences were noise-vocoded to increase reliance on envelope cues. Envelope reconstruction for envelopes between 0 and 10Hz showed that the children with dyslexia had significantly poorer speech encoding in the 0-2Hz band compared to both CA and RL controls. These data suggest that impaired neural encoding of low frequency speech envelopes, related to speech prosody, may underpin the phonological deficit that causes dyslexia across languages.Medical Research Council (Grant ID: G0902375)This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.bandl.2016.06.00

    Awareness of Rhythm in SLI

    Get PDF
    Children with specific language impairments (SLIs) show impaired perception and production of language, and also show impairments in perceiving auditory cues to rhythm [amplitude rise time (ART) and sound duration] and in tapping to a rhythmic beat. Here we explore potential links between language development and rhythm perception in 45 children with SLI and 50 age-matched controls. We administered three rhythmic tasks, a musical beat detection task, a tapping-to-music task, and a novel music/speech task, which varied rhythm and pitch cues independently or together in both speech and music. Via low-pass filtering, the music sounded as though it was played from a low-quality radio and the speech sounded as though it was muffled (heard "behind the door"). We report data for all of the SLI children (N = 45, IQ varying), as well as for two independent subgroupings with intact IQ. One subgroup, "Pure SLI," had intact phonology and reading (N = 16), the other, "SLI PPR" (N = 15), had impaired phonology and reading. When IQ varied (all SLI children), we found significant group differences in all the rhythmic tasks. For the Pure SLI group, there were rhythmic impairments in the tapping task only. For children with SLI and poor phonology (SLI PPR), group differences were found in all of the filtered speech/music AXB tasks. We conclude that difficulties with rhythmic cues in both speech and music are present in children with SLIs, but that some rhythmic measures are more sensitive than others. The data are interpreted within a "prosodic phrasing" hypothesis, and we discuss the potential utility of rhythmic and musical interventions in remediating speech and language difficulties in children.This project has been funded by the Nuffield Foundation, but the views expressed are those of the authors and not necessarily those of the Foundation.This is the final version of the article. It was first available from Frontiers via http://dx.doi.org/10.3389/fnhum.2015.0067
    • …
    corecore