4,111 research outputs found

    The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's

    Full text link
    We define the topological entropy per unit volume in parabolic PDE's such as the complex Ginzburg-Landau equation, and show that it exists, and is bounded by the upper Hausdorff dimension times the maximal expansion rate. We then give a constructive implementation of a bound on the inertial range of such equations. Using this bound, we are able to propose a finite sampling algorithm which allows (in principle) to measure this entropy from experimental data.Comment: 26 pages, 1 small figur

    Matching with shift for one-dimensional Gibbs measures

    Get PDF
    We consider matching with shifts for Gibbsian sequences. We prove that the maximal overlap behaves as clognc\log n, where cc is explicitly identified in terms of the thermodynamic quantities (pressure) of the underlying potential. Our approach is based on the analysis of the first and second moment of the number of overlaps of a given size. We treat both the case of equal sequences (and nonzero shifts) and independent sequences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP588 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore