4,111 research outputs found
The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's
We define the topological entropy per unit volume in parabolic PDE's such as
the complex Ginzburg-Landau equation, and show that it exists, and is bounded
by the upper Hausdorff dimension times the maximal expansion rate. We then give
a constructive implementation of a bound on the inertial range of such
equations. Using this bound, we are able to propose a finite sampling algorithm
which allows (in principle) to measure this entropy from experimental data.Comment: 26 pages, 1 small figur
Matching with shift for one-dimensional Gibbs measures
We consider matching with shifts for Gibbsian sequences. We prove that the
maximal overlap behaves as , where is explicitly identified in
terms of the thermodynamic quantities (pressure) of the underlying potential.
Our approach is based on the analysis of the first and second moment of the
number of overlaps of a given size. We treat both the case of equal sequences
(and nonzero shifts) and independent sequences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP588 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
- …
