21 research outputs found

    Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid

    Get PDF
    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density, nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α\alpha-effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.Comment: 37 pages, 11 figures, 54 reference

    Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium

    Get PDF
    Gibberellins (GAs) cause dramatic increases in plant height and a genetic block in the synthesis of GA1 explains the dwarfing of Mendel's pea. For flowering, it is GA5 which is important in the long-day (LD) responsive grass, Lolium. As we show here, GA

    Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls

    Get PDF
    Background Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a ‘typical’ lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Results Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue’s lacking many of the gene transcripts normally associated with lignin biosynthesis. Conclusions Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for ‘typical’ plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a ‘typical’ primary or secondary cell wall might not be applicable to all cell types in all plant species.CPM was funded by Cotton Breeding Australia, a joint venture between Cotton Seed Distributors and CSIRO (Project No. CBA19). HB was funded by the CSIRO’s Office of the Chief Executive (OCE) Postdoctoral Fellowship program. YT and JR were funded in part by Stanford University’s Global Climate and Energy Program, and in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science, DE-FC02–07ER6449

    Flowering of the Grass Lolium perenne

    No full text

    Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus

    No full text
    The ancient cell adhesion fasciclin (FAS) domain is found in bacteria, fungi, algae, insects and animals, and occurs in a large family of fasciclin-like arabinogalactan proteins (FLAs) in higher plants. Functional roles for FAS-containing proteins have been determined for insects, algae and vertebrates; however, the biological functions of the various higher-plant FLAs are not clear. Expression of some FLAs has been correlated with the onset of secondary-wall cellulose synthesis in Arabidopsis stems, and also with wood formation in the stems and branches of trees, suggesting a biological role in plant stems. We examined whether FLAs contribute to plant stem biomechanics. Using phylogenetic, transcript abundance and promoter-GUS fusion analyses, we identified a conserved subset of single FAS domain FLAs (group A FLAs) in Eucalyptus and Arabidopsis that have specific and high transcript abundance in stems, particularly in stem cells undergoing secondary-wall deposition, and that the phylogenetic conservation appears to extend to other dicots and monocots. Gene-function analyses revealed that Arabidopsis T-DNA knockout double mutant stems had altered stem biomechanics with reduced tensile strength and a reduced tensile modulus of elasticity, as well as altered cell-wall architecture and composition, with increased cellulose microfibril angle and reduced arabinose, galactose and cellulose content. Using materials engineering concepts, we relate the effects of these FLAs on cell-wall composition with stem biomechanics. Our results suggest that a subset of single FAS domain FLAs contributes to plant stem strength by affecting cellulose deposition, and to the stem modulus of elasticity by affecting the integrity of the cell-wall matrix

    Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition

    No full text
    The tiller inhibition gene (tin) that reduces tillering in wheat (Triticum aestivum) is also associated with large spikes, increased grain weight, and thick leaves and stems. In this study, comparison of near-isogenic lines (NILs) revealed changes in stem morphology, cell wall composition, and stem strength. Microscopic analysis of stem cross-sections and chemical analysis of stem tissue indicated that cell walls in tin lines were thicker and more lignified than in freetillering NILs. Increased lignification was associated with stronger stems in tin plants. A candidate gene for tin was identified through map-based cloning and was predicted to encode a cellulose synthase-like (Csl) protein with homology to members of the CslA clade. Dinucleotide repeat-length polymorphism in the 5′UTR region of the Csl gene was associated with tiller number in diverse wheat germplasm and linked to expression differences of Csl transcripts between NILs. We propose that regulation of Csl transcript and/or protein levels affects carbon partitioning throughout the plant, which plays a key role in the tin phenotyp

    beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls

    No full text
    Cellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of α- and β-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandisβ-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with wood-fibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems

    Correction to: Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls

    No full text
    Upon publication of the original article [1], the authors had flagged that Fig. 1 had been published twice, as both Fig. 1 and Additional file 3

    A survey of the natural variation in biomechanical and cell wall properties in inflorescence stems reveals new insights into the utility of Arabidopsis as a wood model

    No full text
    The natural trait variation in Arabidopsis thaliana (L.) Heynh. accessions is an important resource for understanding many biological processes but it is underexploited for wood-related properties. Twelve A. thaliana accessions from diverse geographical
    corecore